Background
The relationship between COVID-19 and out-of-hospital cardiac arrests (OHCAs) has been shown during different phases of the first pandemic wave, but little is known about how to predict where cardiac arrests will increase in case of a third peak.
Aim
To seek for a correlation between the OHCAs and COVID-19 daily incidence both during the two pandemic waves at a provincial level.
Methods
We considered all the OHCAs occurred in the provinces of Pavia, Lodi, Cremona, Mantua and Varese, in Lombardy Region (Italy), from 21/02/2020 to 31/12/2020. We divided the study period into period 1, the first 157 days after the outbreak and including the first pandemic wave and period 2, the second 158 days including the second pandemic wave. We calculated the cumulative and daily incidence of OHCA and COVID-19 for the whole territory and for each province for both periods.
Results
A significant correlation between the daily incidence of COVID-19 and the daily incidence of OHCAs was observed both during the first and the second pandemic period in the whole territory (R = 0.4, p<0.001 for period 1 and 2) and only in those provinces with higher COVID-19 cumulative incidence (period 1: Cremona R = 0.3, p = 0.001; Lodi R = 0.4, p<0.001; Pavia R = 0.3; p = 0.01; period 2: Varese R = 0.4, p<0.001).
Conclusions
Our results suggest that strictly monitoring the pandemic trend may help in predict which territories will be more likely to experience an OHCAs’ increase. That may also serve as a guide to re-allocate properly health resources in case of further pandemic waves.
Background
Pollution has been suggested as a precipitating factor for cardiovascular diseases. However, data about the link between air pollution and the risk of out-of-hospital cardiac arrest (OHCA) are limited and controversial.
Methods
By collecting data both in the OHCA registry and in the database of the regional agency for environmental protection (ARPA) of the Lombardy region, all medical OHCAs and the mean daily concentration of pollutants including fine particulate matter (PM10, PM2.5), benzene (C6H6), carbon monoxide (CO), nitrogen dioxide (NO2), sulphur dioxide (SO2), and ozone (O3) were considered from January 1st to December 31st, 2019 in the southern part of the Lombardy region (provinces of Pavia, Lodi, Cremona and Mantua; 7863 km2; about 1550000 inhabitants). Days were divided into high or low incidence of OHCA according to the median value. A Probit dose-response analysis and both uni- and multivariable logistic regression models were provided for each pollutant.
Results
The concentrations of all the pollutants were significantly higher in days with high incidence of OHCA except for O3, which showed a significant countertrend. After correcting for temperature, a significant dose-response relationship was demonstrated for all the pollutants examined. All the pollutants were also strongly associated with high incidence of OHCA in multivariable analysis with correction for temperature, humidity, and day-to-day concentration changes.
Conclusions
Our results clarify the link between pollutants and the acute risk of cardiac arrest suggesting the need of both improving the air quality and integrating pollution data in future models for the organization of emergency medical services.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.