-Cyclone models have been used without relevant modifications for more than a century. Most of the attention has been focused on finding new methods to improve performance parameters. Recently, some studies were conducted to improve equipment performance by evaluating geometric effects on projects. In this work, the effect of cyclone geometry was studied through the creation of a symmetrical inlet and a volute scroll outlet section in an experimental cyclone and comparison to an ordinary single tangential inlet. The study was performed for gas-solid flow, based on an experimental study available in the literature, where a conventional cyclone model was used. Numerical experiments were performed by using CFX 5.7.1. The axial and tangential velocity components were evaluated using RSM and LES turbulence models. Results showed that these new designs can improve the cyclone performance parameters significantly and very interesting details were found on cyclone fluid dynamics properties using RSM and LES.
The conventional design of the cyclone model has been used without significant modifications for about a century. Recently, some studies were carried out to improve equipment performance by evaluating the geometric influence of the tangential inlet section and scroll inlet duct design. In this work, the influence of cyclone inlet section geometry was studied using an angle of 45 degrees in relation to the cyclone body. The study was conducted for the gas and gas-particle phases, based on an experimental study available in the literature, where a conventional inlet section was used. Numerical experiments were carried out with the CFX computational code. The fluid dynamics profiles and tangential velocity component were evaluated for three inlet velocities (2.75, 7.75 and 15.2 m/s) using the Reynolds Stress model. The results showed that this proposal is useful for improving the cyclone performance.
The conventional design of the cyclone model has been used without significant modifications for about a century. Recently, some studies were carried out to improve equipment performance by evaluating the geometric influence of the tangential inlet section and scroll inlet duct design. In this work, the influence of cyclone inlet section geometry was studied using an angle of 45 degrees in relation to the cyclone body. The study was conducted for the gas and gas-particle phases, based on an experimental study available in the literature, where a conventional inlet section was used. Numerical experiments were carried out with the CFX computational code. The fluid dynamics profiles and tangential velocity component were evaluated for three inlet velocities (2.75, 7.75 and 15.2 m/s) using the Reynolds Stress model. The results showed that this proposal is useful for improving the cyclone performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.