Objective-To better understand the role of lecithin:cholesterol acyltransferase (LCAT) in lipoprotein metabolism through the genetic and biochemical characterization of families carrying mutations in the LCAT gene. Methods and Results-Thirteen families carrying 17 different mutations in the LCAT gene were identified by Lipid Clinics and Departments of Nephrology throughout Italy. DNA analysis of 82 family members identified 15 carriers of 2 mutant LCAT alleles, 11 with familial LCAT deficiency (FLD) and 4 with fish-eye disease (FED). Forty-four individuals carried 1 mutant LCAT allele, and 23 had a normal genotype. Plasma unesterified cholesterol, unesterified/total cholesterol ratio, triglycerides, very-low-density lipoprotein cholesterol, and pre- high-density lipoprotein (LDL) were elevated, and high-density lipoprotein (HDL) cholesterol, apolipoprotein A-I, apolipoprotein A-II, apolipoprotein B, LpA-I, LpA-I:A-II, cholesterol esterification rate, LCAT activity and concentration, and LDL and HDL 3 particle size were reduced in a gene-dose-dependent manner in carriers of mutant LCAT alleles. No differences were found in the lipid/lipoprotein profile of FLD and FED cases, except for higher plasma unesterified cholesterol and unesterified/total cholesterol ratio in the former. Conclusion-In a large series of subjects carrying mutations in the LCAT gene, the inheritance of a mutated LCAT genotype causes a gene-dose-dependent alteration in the plasma lipid/lipoprotein profile, which is remarkably similar between subjects classified as FLD or FED. Key Words: familial lecithin:cholesterol acyltransferase deficiency Ⅲ fish eye disease Ⅲ high-density lipoproteins Ⅲ lecithin:cholesterol acyltransferase Ⅲ mutation T he lecithin:cholesterol acyltransferase (LCAT) (phosphatidylcholine:sterol-O-acyltransferase; EC 2.3.1.43) enzyme is responsible for the synthesis of cholesteryl esters (CE) in plasma. 1 Through this action, LCAT plays a central role in the formation and maturation of high-density lipoproteins (HDL), and in the intravascular stage of reverse cholesterol transport, the major mechanism by which HDL modulate the development and progression of atherosclerosis. A defect in LCAT function would be expected to enhance atherosclerosis by interfering with this process.The human LCAT gene encompasses 4.2 kilobases and is localized in the q21-22 region of chromosome 16.
Methods
SubjectsProbands with primary hypoalphalipoproteinemia (HALP), defined by a plasma HDL-C level below the fifth percentile for the age-and sex-matched general population, were identified by Lipid Clinics and Departments of Nephrology throughout Italy. Plasma samples were analyzed for total and unesterified cholesterol; in 18 unrelated index cases, the results were suggestive of a defect in the LCAT gene. Genetic analysis revealed that 13 of 18 index cases carried at least 1 mutant LCAT allele. Relatives of the 13 probands were invited to participate in the study. All subjects gave an informed consent. Blood samples were collected after an overni...
Mutations in the APOA5 gene, leading to truncated apolipoprotein A-V devoid of lipid-binding domains located in the carboxy-terminal end of the protein, if present in the homozygous state, are expected to cause severe type V hyperlipidemia in patients with no mutations in LPL or APOC2 genes. If present in the heterozygous state, these mutations predispose to hypertriglyceridemia in combination with other genetic factors or pathological conditions.
Background: Familial hypercholesterolemia (FH) is an autosomal dominant disease characterized by elevated plasma levels of LDLcholesterol that confers an increased risk of premature atherosclerotic cardiovascular disease. Early identification and treatment of FH patients can improve prognosis and reduce the burden of cardiovascular mortality.Aim of this study was to perform the mutational analysis of FH patients identified through a collaboration of 20 Lipid Clinics in Italy (LIPIGEN Study). Methods: We recruited 1592 individuals with a clinical diagnosis of definite or probable FH according to the Dutch Lipid Clinic Network criteria. We performed a parallel sequencing of the major candidate genes for monogenic hypercholesterolemia (LDLR, APOB, PCSK9, APOE, LDLRAP1, STAP1). Results: A total of 213 variants were detected in 1076 subjects. About 90% of them had a pathogenic or likely pathogenic variants. More than 94% of patients carried pathogenic variants in LDLR gene, 27 of which were novel. Pathogenic variants in APOB and PCSK9 were exceedingly rare. We found 4 true homozygotes and 5 putative compound heterozygotes for pathogenic variants in LDLR gene, as well as 5 double heterozygotes for LDLR/APOB pathogenic variants. Two patients were homozygous for pathogenic variants in LDLRAP1 gene resulting in autosomal recessive hypercholesterolemia. One patient was found to be heterozygous for the ApoE variant p.(Leu167del), known to confer an FH phenotype. Conclusions: This study shows the molecular characteristics of the FH patients identified in Italy over the last two years. Full phenotypic characterization of these patients and cascade screening of family members is now in progress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.