The paper proposes the architecture and basic requirements for a network processor for OpenFlow switches of software-defined networks. An analysis of the architectures of well-known network processors is presented − NP-5 from EZchip (now Mellanox) and Tofino from Barefoot Networks. The advantages and disadvantages of two different versions of network processor architectures are considered: pipeline-based architecture, the stages of which are represented by a set of general-purpose processor cores, and pipeline-based architecture whose stages correspond to cores specialized for specific packet processing operations. Based on a dedicated set of the most common use case scenarios, a new architecture of the network processor unit (NPU) with functionally specialized pipeline stages was proposed. The article presents a description of the simulation model of the NPU of the proposed architecture. The simulation model of the network processor is implemented in C ++ languages using SystemC, the open-source C++ library. For the functional testing of the obtained NPU model, the described use case scenarios were implemented in C. In order to evaluate the performance of the proposed NPU architecture a set of software products developed by KM211 company and the KMX32 family of microcontrollers were used. Evaluation of NPU performance was made on the basis of a simulation model. Estimates of the processing time of one packet and the average throughput of the NPU model for each scenario are obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.