We use time-resolved photoluminescence (TRPL) spectroscopy to unequivocally clarify the microscopic origin of the nanosecond free exciton photoluminescence rise in GaAs at low temperatures. In crucial distinction from previous work, we examine the TRPL of the GaAs free exciton second LO-phonon replica. This enables us to simultaneously monitor the unambiguous time evolution of the total exciton population and the cooling dynamics of the initially hot free exciton ensemble. We demonstrate by a model based on the Saha equation and the experimentally determined cooling behavior that the long-debated slow photoluminescence rise is caused by time-dependent shifts in the thermodynamic quasiequilibrium between free excitons and the uncorrelated electron-hole plasma.
We report on the observation of macroscopic free exciton photoluminescence (PL) rings that appear in spatially resolved PL images obtained on a high purity GaAs sample. We demonstrate that a spatial temperature gradient in the photocarrier system, which is due to nonresonant optical excitation, locally modifies the population balance between free excitons and the uncorrelated electron-hole plasma described by the Saha equation and accounts for the experimentally observed nontrivial PL profiles. The exciton ring formation is a particularly instructive manifestation of the spatially dependent thermodynamics of a partially ionized exciton gas in a bulk semiconductor.
We report on low-temperature spatially resolved photoluminescence spectroscopy to study the diffusion of free excitons in etched wire structures of high-purity GaAs. We assess the stationary diffusion profiles by the free exciton second LO-phonon replica to circumvent the inherent interpretation ambiguities of the previously investigated free exciton zero-phonon line. Moreover, strictly resonant optical excitation prevents the distortion of the diffusion profiles due to local heating in the carrier system. We observe a dimensional crossover from 2D to 1D exciton diffusion when the lateral wire width falls below the diffusion length.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.