Motivated by the high computational costs of classical simulations, machine-learned generative models can be extremely useful in particle physics and elsewhere. They become especially attractive when surrogate models can efficiently learn the underlying distribution, such that a generated sample outperforms a training sample of limited size. This kind of GANplification has been observed for simple Gaussian models. We show the same effect for a physics simulation, specifically photon showers in an electromagnetic calorimeter.
While simulation is a crucial cornerstone of modern high energy physics, it places a heavy burden on the available computing resources. These computing pressures are expected to become a major bottleneck for the upcoming high luminosity phase of the LHC and for future colliders, motivating a concerted effort to develop computationally efficient solutions. Methods based on generative machine learning models hold promise to alleviate the computational strain produced by simulation, while providing the physical accuracy required of a surrogate simulator. This contribution provides an overview of a growing body of work focused on simulating showers in highly granular calorimeters, which is making significant strides towards realising fast simulation tools based on deep generative models. Progress on the simulation of both electromagnetic and hadronic showers will be reported, with a focus on the high degree of physical fidelity achieved. Additional steps taken to address the challenges faced when broadening the scope of these simulators, such as those posed by multi-parameter conditioning, will also be discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.