. Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices. I E E E Photonics Technology Letters, 13(6) Abstract-Measurements of ultrafast gain recovery in self-assembled InAs quantum-dot (QD) amplifiers are explained by a comprehensive numerical model. The QD excited state carriers are found to act as a reservoir for the optically active ground state carriers resulting in an ultrafast gain recovery as long as the excited state is well populated. However, when pulses are injected into the device at high-repetition frequencies, the response of a QD amplifier is found to be limited by the wetting-layer dynamics.Index Terms-Gain recovery, quantum-dot amplifiers, ultrafast.
Multiphonon capture processes are investigated theoretically and found to contribute efficiently to the carrier injection into quantum dots. It is shown that two-phonon capture contributes where single-phonon capture is energetically inhibited and can lead to electron capture times of a few picoseconds at room temperature and carrier densities of 10 17 cm Ϫ3 in the barrier.
We show comparison of four different numerical methods for simulating Photonic-Crystal (PC) VCSELs. We present the theoretical basis behind each method and analyze the differences by studying a benchmark VCSEL structure, where the PC structure penetrates all VCSEL layers, the entire top-mirror DBR, a fraction of the top-mirror DBR or just the VCSEL cavity. The different models are evaluated by comparing the predicted resonance wavelengths and threshold gains for different hole diameters and pitches of the PC. The agreement between the models is relatively good, except for one model, which corresponds to the effective index method. The simulation results elucidate the strength and weaknesses of the analyzed methods; and outline the limits of applicability of the different models.
We calculate carrier capture rates into cone-and truncated-cone-shaped quantum dots mediated by Auger processes. It is demonstrated that the capture rates depend strongly on both dot size and shape. The importance of phonon-mediated versus the Auger-mediated capture processes is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.