A stand-alone noise suppression algorithm is presented for reducing the spectral effects of acoustically added noise in speech. Effective performance of digital speech processors operating in practical environments may require suppression of noise from the digital waveform. Spectral subtraction offers a computationally efficient, processorindependent approach to effective digital speech analysis. The method, requiring about the same computation as high-speed convolution, suppresses stationary noise from speech by subtracting the spectral noise bias calculated during nonspeech activity. Secondary procedures are then applied to attenuate the residual noise left after subtraction. Since the algorithm resynthesizes a speech waveform, it can be used as a preprocessor to narrow-band voice communications systems, speech recognition systems, or speaker authentication systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.