In this paper, analysis of the feature selection for scale invariance texture image retrieval using fuzzy logic classifier and wavelet and co-occurrence matrix based feature is carried out. Two types of texture features are extracted one using Discrete Wavelet Transform (DWT) and other using Cooccurrence matrix. Energy and Standard Deviation are obtained from each sub-band of DWT coefficients up to fifth level of decomposition and eight features are extracted from co-occurrence matrix of whole image and each sub-band of first level DWT decomposition. The different size samples of texture image are undertaken. The suitability of features extracted is analyzed using a fuzzy logic classifier. The performance is measured in terms of Success Rate. Best and Worst case analysis is done for each of the feature set and texture image size. Also the minimum number of features required for maximum average success rate is obtained. This study shows that for samples taken from 256x256 texture size, excellent success rate is achieved for Wavelet Statistical Features (WSF) as well as Wavelet Co-occurrence Features (WCF). Also WSF perform better for 128x128 and 256x256 texture image. For both the types of features performance degrades in case of 512x512 texture image. Worst case analysis shows that energy feature WSF and 8-features group WCF performs excellently.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.