The effect of the oral direct thrombin inhibitor ximelagatran and its active form, melagatran, on thrombin generation was investigated in vitro and ex vivo using a thrombin generation assay. In-vitro thrombin generation was triggered in human platelet-poor plasma by the addition of tissue factor, and the endogenous thrombin potential (ETP) was measured. The ETP IC(50) values for melagatran and the low-molecular-weight heparin dalteparin were 0.44 micromol/l and 0.06 IU/ml, respectively. In contrast to dalteparin, melagatran increased the time-to-thrombin peak in a concentration-dependent manner. ETP was also studied ex vivo in platelet-poor plasma collected from healthy male subjects (n = 54) at pre-dose and 2 h post-dose, with ximelagatran (60 mg) orally, dalteparin (120 IU/kg) subcutaneously, or control (water) orally. After ximelagatran or dalteparin administration, the time-to-thrombin peak was prolonged by 41 and 95%, and the ETP was decreased by 61 and 77%, respectively. Thus, melagatran, the active form of the oral direct thrombin inhibitor ximelagatran, efficiently delays and inhibits the generation of thrombin in plasma both in vitro and ex vivo.
The Drosophila eag gene has been shown to regulate neuronal excitability (Wu et al., 1983), olfaction (Dubin et al., 1998), associative learning (Griffith et al., 1994) and larval locomotion (Wang et al., 2002a). Not all of the roles of this gene in these processes can be explained by its function as a voltage-gated potassium channel (e.g. Zhong and Wu, 1991). In this study, we show that the eag gene is spliced in a PKA- and PKC-regulated manner to produce a protein lacking channel domains. This protein, in the context of activated PKA, can engage cellular signaling pathways that alter cell structure. Nuclear localization is necessary for C-terminal-mediated effects, which also require MAPK. The requirement for PKA/PKC activation in the synthesis and function of this novel protein suggests that it may couple membrane events to nuclear signaling to regulate neuronal function on long time scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.