This paper presents a 95% power-efficient dutycycled LDO-assisted voltage selector (LAVS) for fine grained spatial and temporal voltage scaling in FDSOI 28nm technology. LAVS enables 200ns/V controlled transitions between three power rails over a 0.5-to-1V range while maintaining the digital activity of the supplied load. During transitions, current and voltage detections are proposed to protect power rails from reverse current. LAVS has a 13% Si area overhead to drive a 0.2mm 2 digital load. Thanks to a 100MHz-bandwidth LDO, which is only enabled during transition to save power consumption, the voltage selector also maintains a smooth voltage transition even if a digital load suddenly changes its activity factor (4mV/mA load transient). LAVS achieves 30pJ energy dissipation per voltage transition which is negligible compared to the power consumed by the digital load (50mW@0.2mm 2). This therefore allows a MHz dynamic voltage scaling rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.