The Radiation Belt Storm Probes (RBSP)-Energetic Particle, Composition, and Thermal Plasma (ECT) suite contains an innovative complement of particle instruments to ensure the highest quality measurements ever made in the inner magnetosphere and radiation belts. The coordinated RBSP-ECT particle measurements, analyzed in combination with fields and waves observations and state-of-the-art theory and modeling, are necessary for understanding the acceleration, global distribution, and variability of radiation belt elec-
The Radiation Belt Storm Probes (RBSP)-Energetic Particle, Composition, and Thermal Plasma (ECT) suite contains an innovative complement of particle instruments to ensure the highest quality measurements ever made in the inner magnetosphere and radiation belts. The coordinated RBSP-ECT particle measurements, analyzed in combination with fields and waves observations and state-of-the-art theory and modeling, are necessary for understanding the acceleration, global distribution, and variability of radiation belt elec-
[1] We present the first simulation results for electrons in the outer radiation belt near geosynchronous orbit, where radial diffusion and resonant interactions with whistlermode chorus outside the plasmasphere are taken into account. Bounce averaged pitch-angle and energy diffusion rates are introduced in the Salammbô code for L 6.5, for electron energies between 10 keV and 3 MeV and fpe/fce values between 1.5 and 10. Results show that an initial seed population with a power law (Kappa) distribution and a characteristic plasmasheet energy of $5 keV can be accelerated up to a few MeV, for 4.5 < L < 6.6 and give a steady state profile similar to the one obtained from average satellite measurements. For a Kp = 4 magnetic storm simulation MeV electron fluxes increase by more than a factor of 10 on a timescale of 1 day. We conclude that whistler-mode chorus waves can be a major electron acceleration process at geostationary orbit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.