SKS phases observed at broadband stations in Germany show significant shear-wave splitting. We have analyzed SKS and SKKS phases for shear-wave splitting from 13 stations of the German Regional Seismic Network (GRSN), from 3 three-component stations of the Gräfenberg array (GRF) and from one Austrian station (SQTA). The data reveal strong differences in the splitting parameters (fast direction and delay time lt) from a single event at various stations as well as variations at the individual stations for events with different backazimuths. The backazimuthal variations of the splitting parameters at some stations can be explained by two-layer anisotropy models with horizontal symmetry axes. The best resolved two-layer model is the GRA1 model (upper layer: = 40°, lt= 1.15 s; lower layer: = 115°, lt= 1.95 s). The upper layer can be attributed to the lithosphere. Because of the magnitude of the delay time of the upper layer, the lower layer must lie within the asthenosphere. At other stations splitting parameters are consistent with an anisotropic one-layer model for the upper mantle. Stations near the Bohemian Massif show fast directions near EW. Throughout NE Germany the directions are oriented NW/SE. The reason for this direction is probably the nearby Tornquist-Teisseyre line. The observed fast axes are subparallel to this prominent Transeuropean suture zone. At stations in southern Germany near the Alps we observed ENE/WSW directions. Below some stations we also found indications of inclined anisotropic layers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.