Compression bandage (CB) as a porous material should provide both graduated pressure and thermal comfort properties to enable air permeability, heat transfer, and liquid perspiration out of the human body. The main factors affecting thermal comfort properties are the temperature difference between environment and skin, yarns’ structure and material, fabric thickness, porosity, areal density, number of fabric layers, trapped air, and fabric structure. Thermal resistance (Rct) and water vapor resistance (Ret) are evaluated for four types of woven CBs. All bandage types were applied at the range of extension (10–80%) using both two- and three-layer bandaging on thermal foot model (TFM). Rct values are compared with measured results by the Alambeta instrument, whereas Ret test is performed on the Permetest device. Thermal resistance is significantly decreased when increasing the bandage extension from 10 to 40%, then it is slightly increased by increasing the extension from 40 to 60%, after that it is decreased especially at 80% extension due to lower bandage thickness and higher compression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.