We perform experimental and numerical studies of a shock tube with an open end. The purpose is to investigate the impulse due to the exhaust of gases through the open end of the tube as a model for a partially filled detonation tube as used in pulse detonation engine testing. We study the effects of the pressure ratio (varied from 3 to 9.2) and the volume ratio (expressed as fill fractions) between the driver and driven section. Two different driver gases, helium and nitrogen, and fill fractions between 5 and 100% are studied; the driven section is filled with air. For both driver gases, increasing the pressure ratio leads to larger specific impulses. The specific impulse increases for a decreasing fill fraction for the helium driver, but the impulse is almost independent of the fill fraction for the nitrogen driver. Twodimensional (axisymmetric) numerical simulations are carried out for both driver gases. The simulation results show reasonable agreement with experimental measurements at high pressure ratios or small fill fractions, but there are substantial discrepancies for the smallest pressure ratios studied. Empirical models for the impulse in the limits of large and small fill fractions are also compared with the data. Reasonable agreement is found for the trends with fill fractions using the Gurney or Sato model at large fill fractions, but only Cooper's bubble model is able to predict the small fill fraction limit. Computations of acoustic impedance and numerical simulations of unsteady gas dynamics indicate that the interaction of waves with the driver-driven gas interface and the propagation of waves in the driven gas play an essential role in the partial-fill effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.