(1)H nuclear magnetic resonance relaxometry is applied to reveal information on the translational and rotational dynamics of the ionic liquid: 1-butyl-3-methyl imidazoliumoctyl sulfate (BMIM-OcSO4) in bulk and in a confinement formed by a nanoporous SiO2 matrix. The experimental studies were performed in a very broad frequency range, from 8 kHz to 40 MHz (referring to the (1)H resonance frequency), in order to probe motional processes at very different time scales using a single experiment, and in the temperature range of 243-303 K. The relaxation results for BMIM-OcSO4 in bulk are interpreted in terms of three relaxation contributions: a term associated with the translational dynamics of the ions (it has been assumed that the translational dynamics of cations and anions can be described by one diffusion coefficient) and two terms associated with the rotational motion of the anion and the cation, respectively. The relationships between the obtained dynamic parameters (rotational correlation times and translational diffusion coefficients) are thoroughly discussed and used as a "reference" for the dynamics of BMIM-OcSO4 confined in an SiO2 matrix. Analysis of the corresponding relaxation data for the confined liquid shows that the confinement does not significantly affect the rotational dynamics, but it has a considerable impact on the translational motion. It is demonstrated that the relaxation term associated with the translational dynamics stems from two contributions: a contribution from a core (bulk-like) fraction of the liquid and from a fraction moving near the pore surface and therefore being for some time adsorbed on the pore walls. The translational diffusion coefficient for the last fraction is determined and several conclusions regarding the residence lifetime of the ions on the surface are drawn. Moreover, an additional motional process on the timescale of ns or shorter is revealed in the confinement.
(1)H nuclear magnetic resonance relaxometry has been applied to reveal information on dynamics and structure of Gu3Bi2I9 ([Gu = C(NH2)3] denotes guanidinium cation). The data have been analyzed in terms of a theory of quadrupole relaxation enhancement, which has been extended here by including effects associated with quadrupole ((14)N) spin relaxation caused by a fast fluctuating component of the electric field gradient tensor. Two motional processes have been identified: a slow one occurring on a timescale of about 8 × 10(-6) s which has turned out to be (almost) temperature independent, and a fast process in the range of 10(-9) s. From the (1)H-(14)N relaxation contribution (that shows "quadrupole peaks") the quadrupole parameters, which are a fingerprint of the arrangement of the anionic network, have been determined. It has been demonstrated that the magnitude of the quadrupole coupling considerably changes with temperature and the changes are not caused by phase transitions. At the same time, it has been shown that there is no evidence of abrupt changes in the cationic dynamics and the anionic substructure upon the phase transitions.
T h e collisional broadening and shift of three spectral lines 486.3, 515.8 and 520.3 nm of neon emitted from a low-pressure glow discharge in pure neon and neon-helium mixtures have been measured. The values of pressure broadening and shift coefficients were determined. Our experimental data disagree with those resulting from the Kaulakys and Ueda theories of pressure effects on Rydberg states.
In contaminated soils, excessive concentrations of metals and their high mobility pose a serious environmental risk. A suitable soil amendment can minimize the negative effect of metals in soil. This study investigated the effect of different biochars on metal (Cu, Pb, Zn) immobilization in industrial soil. Biochars produced at 300 and 600 °C from conventional (MS, maize silage; WP, wooden pellets) and alternative (SC, sewage sludge compost; DR, digestate residue) feedstocks were used as soil amendments at a dosage of 10 % (w/w). The type of feedstock and pyrolysis temperature affected the properties of the biochars and their ability to immobilize metal in soil. Compared to production at 300 °C, all biochars produced at 600 °C had higher pH (6.2-10.7), content of ash (7.2-69.0 %) and fixed carbon (21.1-56.7 %), but lower content of volatile matter (9.7-37.2 %). All biochars except DR biochar had lower dissolved organic carbon (DOC) content (1.4-2.3 g C/L) when made at 600 °C. Only MS and SC biochars had higher cation exchange capacity (25.2 and 44.7 cmol/kg, respectively) after charring at 600 °C. All biochars contained low concentrations of Cd, Cu, Ni, Pb and Zn; Cd was volatilized to the greatest extent during pyrolysis. Based on FTIR analysis and molar ratios of H/C and O/C, biochars had a greater degree of carbonization and aromaticity after charring at 600 °C. The efficiency of the biochars in metal immobilization depended mainly on their pH, ash content, and concentration of DOC. SC and DR biochars were more effective for Cu and Zn immobilization than MS and WP biochars, which makes them attractive options for large-scale soil amendment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.