Background Apple blotch (AB) caused by Diplocarpon coronariae (Dc) has been established in Europe since 2010. AB is a serious apple disease, mostly in low input orchards and in cider production areas in Northern Italy, Switzerland, Austria and Germany. However, the epidemiology and population genetic structure of this pathogen is unknown. Methods We developed twelve Dc-specific microsatellite markers and screened DNA of both pure fungal isolates and infected apple leaves. The marker data of 313 European samples of Dc were compared to Dc isolates from Asia (n = 7) and the USA (n = 3). Results We found 31 distinct multilocus genotypes (MLGs) in European samples, and seven additional MLGs in the Asian and USA samples. The European samples had the typical genetic signature of a recently introduced species including high clonality, a low number of private alleles and one dominant MLG across all the sampling sites. All European MLGs were genetically distant from those MLGs of Asian and USA origin. Based on the lack of linkage disequilibrium observed, there is evidence that Dc undergoes regular cycles of sexual recombination in the European population, although the sexual stage (apothecia) has not been observed in Europe. Conclusions The twelve newly developed SSR markers reported here provide a useful tool to characterize the population genetic diversity and structure of Dc in Europe. Our study supports the hypothesis that Dc is a recently introduced pathogen in Europe, but of currently unknown origin. Dc has a large effective population size during field epidemics, so we believe that the pathogen has substantial evolutionary potential. Application of the SSR markers to large-scale and diverse Dc samples will help to better understand the epidemiology of AB, which has become a global apple disease, and will help guide effective mitigation strategies based on disease management and resistance breeding.
Apple blotch (AB) is a major disease of apple in Asia and recently emerged in Europe and the USA. It is caused by the fungus Diplocarpon coronariae (Dc) (formerly: Marssonina coronaria; teleomorph: Diplocarpon mali) and leads to severe defoliation of apple trees in late summer resulting in reduced yield and fruit quality. To develop effective disease management strategies, a sound knowledge of the pathogen’s biology is crucial. Data on the early phase of disease development is scarce: no data on spore dispersal in Europe is available. We developed a highly sensitive TaqMan qPCR method to quantify Dc conidia in spore trap samples. We monitored temporal and spatial dispersal of conidia of Dc, and progress of AB in spring and early summer in an extensively managed apple orchard in Switzerland in 2019 and 2020. Our results show that Dc overwinters in leaf litter and spore dispersal and primary infections occur in late April and early May. We provide the first results describing early-season dispersal of conidia of Dc, which, combined with the observed disease progress, helps to understand the disease dynamics and will be a basis for improved disease forecast models. Using the new qPCR method, we detected Dc in buds, on bark, and on fruit mummies, suggesting that several apple tissues may serve as overwintering habitats for the fungus, in addition to fallen leaves.
Apple blotch (AB) is a major disease of apples in Asia and recently also emerging in Europe and the USA. It is caused by the fungus Diplocarpon coronariae (Dc) (formerly: Marssonina coronaria; teleomorph: Diplocarpon mali) and leads to severe defoliation of apple trees in late summer and thus to reduced yield and fruit quality. To develop effective crop protection strategies, a sound knowledge of the pathogen's biology is crucial. However, especially data on the early phase of disease development is scarce, and no data on spore dispersal for Europe is available. In this study, we assessed different spore traps for their capacity to capture Dc spores, and we developed a highly sensitive TaqMan qPCR method to quantify Dc conidia in spore trap samples. With these tools, we monitored the temporal and spatial spore dispersal and disease progress in spring and early summer in an extensively managed apple orchard in Switzerland in 2019 and 2020. Our results show that Dc overwinters in leaf litter and that spore dispersal and primary infections occur already in late April and beginning of May. We provide the first results on early-season spore dispersal of Dc, which, combined with the observed disease progress, helps to understand the disease dynamics and improve disease forecast models. Using the new qPCR method, we finally detected Dc in buds, on bark and on fruit mummies, suggesting that these apple organs may serve as additional overwintering habitats for the fungus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.