In this paper a brief overview of research in the field of electrode materials for solar cells and supercapacitors is presented, which the authors dealt with for years. In addition to the standard electrode material (graphite and silicon in supercapacitor with solar cells), different materials were examined, particularly oxides and sulfides of copper. Copper (I) oxide or cuprous oxide is an oxide semiconductor which is used as the anodic material in the form of thin film in lithium batteries and solar cells. The cathodic process of synthesis of cuprous oxide thin film is carried out in a potentiostatic mode from the organic electrolyte. The electrochemical characterization was carried out by cyclic voltammetry. The electro deposition techniques are particularly well suited for the deposition of single elements, but it is also possible to carry out simultaneous depositions of several elements and syntheses of well-defined alternating layers of metals and oxides with thicknesses down to a few nanometers. Electrochemical characteristics of covellite (CuS) are of importance from flotation and metallurgical point of view, due to its potential application in solid state solar cells and in photocatalytic reactions. Also, the compound CuS appears as an intermediary product or a final product in electrochemical oxidation reactions of chalcocite (Cu2S) which exhibits supercapacitor characteristics. Natural copper mineral covellite has been investigated in inorganic sulfate acid electrolytes, as well as in strong alkaline electrolyte. Different electrochemical methods (galvanostatic, potentiostatic, cyclic voltammetry, and electrochemical impedance spectroscopy) have been used in these investigations.
The quest and need for clean and economical energy sources have increased interest in the development of thin film cells technologies. Electrochemical deposition is an attractive method for synthesis of thin films. It offers the advantages of low synthesis temperature, low cost and high purity. Copper (I) oxide or cuprous oxide is an oxide semiconductor which is used as the anodic material in the form of thin film in lithium batteries and solar cells. The cathodic process of synthesis of cuprous oxide thin film is carried out in a potentiostatic mode from the organic electrolyte. The process parameters are chosen in that way to accomplish maximum difference between the potentials at which Cu2O and CuO are obtained. The electrochemical characterization was carried out by cyclic voltammetry. The electrodeposition techniques are particularly well suited for the deposition of single elements but it is also possible to carry out simultaneous depositions of several elements and syntheses of well-defined alternating layers of metals and oxides with thicknesses down to a few nm. Nanomaterials exhibit novel physical properties and play an important role in fundamental research. In addition, cuprous oxide is commonly used as a pigment, a fungicide, and an antifouling agent for marine paints. It is insoluble in water and organic solvents. This work presents the examinations of the influence of bath, temperature, pH and current density on the characteristics of electrochemically synthesized cuprous oxide. In the 'classic' process of synthesis, which is carried out under galvanostatic conditions on the anode, the grain size of the powder decreases with the increase in current density while the grain colour becomes lighter. The best commercial quality of the Cu2O (grain size, colour, content of choride) was obtained at the temperature of 80°C, concentration of NaCl of 3 mol/dm3 and current density of 400 A/m2
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.