Carbon thin films are often called in the literature, "diamond-like carbon" films. They consist of two basic allotropic forms of carbon, which are graphite and diamond. Carbon atoms with sp 2 bonds form after deposition of a graphite-like phase. Atoms with sp 3 bonds form a diamond-like phase. Diamond-like crystallites are built into a graphite-like phase matrix. In this paper there are presented experimental results of deposition of carbon films by the magnetron sputtering method and the results of analysis of the surface and phase structures of the deposited films. The amorphous carbon films were deposited from graphite targets on 316L steel substrates. The films were deposited at room temperature, in vacuum. The deposition time was 3 h; the depositions were conducted at two different distances between the substrate and the magnetron target.
The aim of the presented study was an analysis of two apatite coatings: hydroxyapatite (HA) and octacalcium phosphate (OCP) as coatings materials for metallic implants. Both layers were deposited by means of the PLD method. As a target material, synthetic, powdered and pressed hydroxyapatite was used. HA was deposited on 316L steel substrate in two temperature ranges for obtaining different coatings: 150 ± 30°C and 430 ± 30°C for OCP and HA, respectively. As an intermediate layer, the nanocrystalline diamond layer (NCD) was deposited. Examined calcium phosphate layers were tested for adhesion of osteoblast cell culture (MG-63). Analytical methods (AFM, FTIR) showed the usefulness of the PLD method for deposition of the apatite layers on metallic implants. Both examined layers showed biocompatibility with human osteoblast
The degree of the biocompatibility of polycarbonate (PC) polymer used as biomaterial can be controlled by surface modication for various biomedical engineering applications. In the past, PC samples were treated by excimer laser for surface reorganization however associated process alteration of bulk properties is reported. Extreme ultraviolet radiation can be employed in order to avoid bulk material alteration due to its limited penetration. In this study, a 10 Hz laser-plasma EUV source based on a double-stream gas-pu target irradiated with a 3 ns and 0.8 J Nd:YAG laser pulse was used to irradiate PC samples. The PC samples were irradiated with dierent number of EUV shots. Pristine and EUV treated samples were investigated by scanning electron microscopy and atomic force microscopy for detailed morphological characterization of micropatterns introduced by the EUV irradiation. Associated chemical modications were investigated by X-ray photoelectron spectroscopy. Pronounced wall-type micro-and nanostructures appeared on the EUV modied surface resulting in a change of surface roughness and wettability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.