Gravitational lensing is a powerful astrophysical and cosmological probe and is particularly valuable at submillimeter wavelengths for the study of the statistical and individual properties of dusty star-forming galaxies. However, the identification of gravitational lenses is often time-intensive, involving the sifting of large volumes of imaging or spectroscopic data to find few candidates. We used early data from the Herschel Astrophysical Terahertz Large Area Survey to demonstrate that wide-area submillimeter surveys can simply and easily detect strong gravitational lensing events, with close to 100% efficiency.
In a previous paper we presented a homogeneous and 92% complete optical spectral dataset of the 3CR radio sources with redshift <0.3. Here we use the emission line measurements to explore the spectroscopic properties of the sample. The 3CR sources show a bimodal distribution of excitation index, a new spectroscopic indicator that measures the relative intensity of low and high excitation lines. This unveils the presence of two main sub-populations of radio-loud AGN to which we refer to, following previous studies, as high and low excitation galaxies (HEG and LEG, respectively). In addition to the two main classes, we find one source with a spectrum typical of star forming galaxies, and 3 objects of extremely low level of excitation. All broad-line objects are HEG from the point of view of their narrow emission line ratios and all HEG are FR II radio-galaxies with log L 178 [erg s −1 ] > ∼ 32.8. Conversely LEG cover the whole range of radio power encompassed by this 3CR subsample (30.7 < ∼ log L 178 < ∼ 35.4) and they are of both FR I and FR II type. The brightest LEG are all FR II. HEG and LEG obey to two (quasi) linear correlations between the optical line and extended radio luminosities, with HEG being brighter than LEG in the [O III] line by a factor of ∼10. HEG and LEG are offset also in a plane that compares the black hole mass and the ionizing nuclear luminosity. However, although HEG are associated with higher nuclear luminosities, we find LEG among the brightest radio sources of the sample and with a clear FR II morphology, indistinguishable from those seen in HEG. This suggests that LEG are not simply objects with a lower level of accretion. We speculate that the differences between LEG and HEG are related to a different mode of accretion: LEG are powered by hot gas, while HEG require the presence of cold accreting material. The high temperature of the accreting gas in LEG accounts for the lack of "cold" structures (i.e. molecular torus and broad line region), for the reduced radiative output of the accretion disk, and for the lower gas excitation.
We present the first direct and unbiased measurement of the evolution of the dust mass function of galaxies over the past 5 billion years of cosmic history using data from the Science Demonstration Phase of the Herschel‐Astrophysical Terahertz Large Area Survey (Herschel‐ATLAS). The sample consists of galaxies selected at 250 m which have reliable counterparts from the Sloan Digital Sky Survey (SDSS) at z < 0.5, and contains 1867 sources. Dust masses are calculated using both a single‐temperature grey‐body model for the spectral energy distribution and also a model with multiple temperature components. The dust temperature for either model shows no trend with redshift. Splitting the sample into bins of redshift reveals a strong evolution in the dust properties of the most massive galaxies. At z= 0.4–0.5, massive galaxies had dust masses about five times larger than in the local Universe. At the same time, the dust‐to‐stellar mass ratio was about three to four times larger, and the optical depth derived from fitting the UV‐sub‐mm data with an energy balance model was also higher. This increase in the dust content of massive galaxies at high redshift is difficult to explain using standard dust evolution models and requires a rapid gas consumption time‐scale together with either a more top‐heavy initial mass function (IMF), efficient mantle growth, less dust destruction or combinations of all three. This evolution in dust mass is likely to be associated with a change in overall interstellar medium mass, and points to an enhanced supply of fuel for star formation at earlier cosmic epochs.
Exploiting the H-ATLAS Science Demonstration Phase (SDP) survey data, we have determined the luminosity functions (LFs) at rest-frame wavelengths of 100 and 250 µm and at several redshifts z 1, for bright sub-mm galaxies with star formation rates (SFR) 100 M ⊙ yr −1 . We find that the evolution of the comoving LF is strong up to z ≈ 2.5, and slows down at higher redshifts. From the LFs and the information on halo masses inferred from clustering analysis, we derived an average relation between SFR and halo mass (and its scatter). We also infer that the timescale of the main episode of dust-enshrouded star formation in massive halos (M H 3 × 10 12 M ⊙ ) amounts to ∼ 7 × 10 8 yr. Given the SFRs, which are in the range 10 2 − 10 3 M ⊙ yr −1 , this timescale implies final stellar masses of order of 10 11 − 10 12 M ⊙ . The corresponding stellar mass function matches the observed mass function of passively evolving galaxies at z 1. The comparison of the statistics for sub-mm and UV selected galaxies suggests that the dust-free, UV bright phase, is 10 2 times shorter than the sub-mm bright phase, implying that the dust must form soon after the onset of star formation. Using a single reference Spectral Energy Distribution (SED; the one of the z ≈ 2.3 galaxy SMM J2135-0102), our simple physical model is able to reproduce not only the LFs at different redshifts > 1 but also the counts at wavelengths ranging from 250 µm to ≈ 1 mm. Owing to the steepness of the counts and their relatively broad frequency range, this result suggests that the dispersion of sub-mm SEDs of z > 1 galaxies around the reference one is rather small.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.