Stem (black) rust, caused by Puccinia graminis Pers. f. sp. tritici Eriks. & Henn., is one of the most destructive diseases of wheat. It could be controlled through introgression of race-specific resistance genes. However, such kind of resistance is mostly short lived due to emergence of new virulences. For example, resistance genes Sr11, Sr24, Sr30, and Sr31 are no longer effective (2,4). Detection of new virulences has remained vital in the evaluation and identification of new sources of resistance. We report here the detection of virulence to Sr25, a gene from Thinopyrum elongatum (4), which had been effective or partially effective against stem rust worldwide, including race Ug99 (TTKSK) (4). A stem rust isolate collected in 2006 from Karnataka (southern India) produced susceptible reactions (infection type [IT] 3+ to 4) on the primary leaves of differential genotype ‘Agatha’ carrying Sr25 and susceptible check ‘Agra Local’ at 22 ± 2°C. To verify virulence to Sr25, single-pustule isolates from this sample were inoculated onto seedlings of ‘Agrus’, ‘Agatha’, ‘RL6040’ (‘Thatcher’ + Sr25), ‘Superseri#1’, ‘Wheatear’, and ‘Morocco’ + Sr25 (obtained from CIMMYT), which all carry Sr25. All these accessions were found susceptible (IT 3+ to 4) to this isolate, except Wheatear which expressed resistance (IT ;1), indicating the presence of additional gene(s). These genotypes are resistant (ITs ;1 to 2+) to Sr25-avirulent pathotypes. The new pathotype is avirulent to Sr11, 13, 14, 21, 22, 23, 24, 26, 27, 29, 31, 32, 33, 35, 37, 38, 39, 40, 43, and Tmp and virulent to Sr5, 6, 7a, 7b, 8a, 9a, 9b, 9d, 9e, 9f, 9g, 10, 12, 15, 16, 17, 18, 19, 20, 25, 28, 30, 34, 36, 42, Wld-1, and Gt at 22 ± 2°C. This pathotype has been designated as 58G13-3 and PKTSC according to the Indian nomenclature (1) and the North American system (3), respectively. It represents race 40 based on Stakman's differentials. It may have arisen from race 40 through mutation. The type culture of the pathotype has been added to the culture collection at Flowerdale, Shimla. Interestingly, ‘Festiguay’ (Sr30) was found resistant to this pathotype, indicating the presence of additional gene(s), whereas ‘Webster’ (Sr30) was susceptible. Adult plants of Agrus, Agatha, RL6040, Superseri#1, and Morocco+Sr25 also were susceptible, producing 20S to 60S responses. Sr25-avirulent pathotype 62G29 produced a TR (flecking in traces) response on these lines except Morocco + Sr25 that showed 20 to 40MR (moderately resistant) responses. In the same study however, adult plants of Thatcher showed a resistant reaction (10R to MR) at low (16 ± 2°C) and susceptible (20S) at high (22 ± 2°C) temperatures. Agatha and RL6040, having Thatcher as one of the parents, had similar responses. The detection of Sr25 virulence is significant since Sr25 is an important gene to be targeted for breeding wheat cultivars resistant to Ug99. We should use either adult plant resistance and/or pyramiding two or more genes for seedling resistance to enhance the field life of wheat cultivars. References: (1) P. Bahadur et al. Proc. Indian Acad. Sci. 95:29, 1985. (2) S. C. Bhardwaj et al. J. Wheat Res. 1:51, 2007. (3) Y. Jin et al. Plant Dis. 92:923, 2008. (4) R. P. Singh et al. CAB Rev. No. 054:1, 2006.