We propose a gas sensor, based on spontaneous Raman scattering, for the compositional analysis of typical biogas mixtures and present a description of the sensor, as well as of the calibration procedure, which allows the quantification of condensable gases. Moreover, we carry out a comprehensive characterization of the system, in order to determine the measurement uncertainty, as well as influences of temperature and pressure fluctuation. Finally, the sensor is applied at different locations inside a plant in which biogas is produced from renewable raw materials. The composition is monitored after fermenting, after purification and after the final conditioning, where natural gas is added. The Raman sensor is able to detect all the relevant gas components, i.e. CH4, CO2, N2 and H2O, and report their individual concentrations over time. The results were compared to reference data from a conventional gas analyzer and good agreement was obtained.
A sensor system for fast analysis of synthesis gas (mixtures of CO and H(2)) is proposed and characterized. The system is based on spontaneous Raman scattering, which enables simultaneous concentration measurements of all relevant species. For typical synthesis gas applications, this system has to face large variations of temperature and pressure. In addition, strong fluctuations in mixture composition may occur, which lead to rather inconvenient signal intensities. In this paper, we describe a low resolution spectrometer designed to function as a synthesis gas sensor and characterize pressure and temperature effects on concentration measurements. In addition, the use of different spectral ranges and calibration strategies is investigated in view of measurement accuracy and precision.
This paper reports on an investigation of the chemical stability of the common laser-induced fluorescence (LIF) tracers acetone, diethylketone, and toluene. Stability is analyzed using linear Raman spectroscopy inside a heated pressure cell with optical access, which is used for the LIF calibration of these tracers. The measurements examine the influence of temperature, pressure, and residence time on tracer oxidation, which occurs without a rise in temperature or pressure inside the cell, highlighting the need for optical detection. A comparison between the three different tracers shows large differences, with diethylketone having the lowest and toluene by far the highest stability. An analysis of the sensitivity of the measurement shows that the detection limit of the oxidized tracer is well below 3% molar fraction, which is typical for LIF applications in combustion devices such as internal combustion (IC) engines. Furthermore, the effect on the LIF signal intensity is examined in an isothermal turbulent mixing study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.