The present study aims at evaluating the treatment of polycyclic aromatic hydrocarbons (PAH) present in oil refinery effluents by advanced oxidation process (AOP), besides analysing the data obtained using artificial neural networks (ANN). The AOP process managed to degrade 10 different PAH initially found in the samples analysed. The efficiency analysis of the process was also evaluated, according to the amounts of total organic carbon (TOC). The ANN Multilayer Perceptron used consisted of 3 layers. Experimental and simulated data used in the training were compared in both trial and validation processes concluding that the amounts were very similar. The network used was able to monitor precisely the tendency of the data and the amounts of TOC, observing the correlation coefficient on both modelling strategies employed. The values of R 2 were 0.994 in the first modelling, using the activation function logsig, and 0.996 in the second one, using tansig. Both modelings used the training algorithm Levenberg-Marquardt, corroborating the efficiency of the process employed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.