The science of nutritional biology has progressed extensively over the last decade to develop food-based nutraceuticals as a form of highly personalized medicine or therapeutic agent. Finger millet [Eleusine coracana (L.) Gaertn.] is a crop with potentially tremendous but under-explored source of nutraceutical properties as compared to other regularly consumed cereals. In the era of growing divide and drawback of nutritional security, these characteristics must be harnessed to develop finger millet as a novel functional food. In addition, introgression of these traits into other staple crops can improve the well-being of the general population on a global scale. The objective of this review is to emphasize the importance of biofortification of finger millet in context of universal health and nutritional crisis. We have specifically highlighted the role that recent biotechnological advancements have to offer for enrichment of its nutritional value and how these developments can commission to the field of nutritional biology by opening new avenues for future research.
Sorghum varieties grown in West Africa usually have low production potential. Information on combining ability of diverse open-pollinated cultivars and gene pools is needed for efficient choice of breeding methods and parental materials to use in developing breeding programs to increase production. Twenty parental lines including 15 restorers and 5 male-sterile A-lines were mated. The 20 parents were sampled from elite germplasm available for cultivar development in the region. Combining ability studies were conducted on these parents along with their F 1 hybrids for grain yield, days to anthesis, plant height, inflorescence length, threshing percentage, and seed mass in 2 years and in two locations. Each location-year combination was considered as an environment. For each trait, general combining ability (GCA) and specific combining ability (SCA) effects were estimated using the line-tester method of analysis. Highly significant GCA effects of males were found for all traits under study. Significant SCA was detected in all traits except inflorescence length. From the ratio of general combining ability to specific combining ability non-additive gene action was predominant for most traits. Parental lines with good performance per se and good performance in crosses for most agronomic traits included: ICSA 902 NG, NR 71182-2, NR 71182-3, CS 144, and Damougari. Both additive and non-additive gene effects are involved in variations observed among crosses. Hybrid breeding could contribute to sorghum improvement in the dry land agriculture of West Africa. Importance of genotype-environment interaction underlines the necessity of evaluating breeding materials under broad range of conditions. The various traits studied can be improved through breeding procedures using a range of different intra-population and inter-population selection procedures. In hybrid breeding procedures, testing of parent lines for general combining ability should be supplemented by evaluation of individual F 1 hybrids for specific combining ability.
The magnitude of genetic expression and associations among traits are important for the prediction of response to selection in diverse environments and provide the basis for planning and evaluating breeding programs. In this regard, a cross classification mating design was used to produce hybrid sorghum populations, which were evaluated in a randomized completed block design with three replications at four environments in Northern Cameroon. Data on grain yield, days to anthesis, plant height, inflorescence length, threshing percentage and seed mass were collected and subjected to statistical genetic analyses. Significant genotype × environment interaction effects were observed for all traits. Genetic variance was essentially attributed to additive gene effects, with dominance variance for grain yield being negligible. However, the reverse was observed for threshability. Genetic variance components were much higher for plant height and grain yield than for days to anthesis, seed mass and threshability. Heritability estimates for plant height and inflorescence length were high (77 and 54 percent respectively) while the estimates for grain yield and threshability were low (14 and 5 percent respectively). Grain yield had positive genotypic correlation with most of the traits. Days to anthesis were negatively correlated with vegetative and reproductive traits. These results suggest that improvement of days to anthesis, plant height, and inflorescence length should be faster because of higher heritabilities and greater phenotypic variation. However, selection for earliness and reduced plant height would not be possible without hampering grain yield. Selecting for yield primary components namely inflorescence length and seed weight would be effective for increasing production. In addition, optimizing agronomic practices and improved experimental design would increase the selection efficiencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.