The Moab Anticline, east‐central Utah, is an exhumed hydrocarbon palaeo‐reservoir which was supplied by hydrocarbons that migrated from the Moab Fault up‐dip towards the crest of the structure beneath the regional seal of the Tidwell mudstone. Iron oxide reduction in porous, high permeability aeolian sandstones records the secondary migration of hydrocarbons, filling of traps against small sealing faults and spill pathways through the Middle Jurassic Entrada Sandstone. Hydrocarbons entered the Entrada Sandstone carrier system from bends and other leak points on the Moab Fault producing discrete zones of reduction that extend for up to 400 m from these leak points. They then migrated in focused stringers, 2–5 m in height, to produce accumulations on the crest of the anticline. Normal faults on the anticline were transient permeability barriers to hydrocarbon migration producing a series of small compartmentalized accumulations. Exsolution of CO2 as local fault seals were breached resulted in calcite cementation on the up‐dip side of faults.
Field observations on the distribution of iron oxide reduction and calcite cements within the anticline indicate that the advancing reduction fronts were affected neither by individual slip bands in damage zones around faults nor by small faults with sand: sand juxtapositions. Faults with larger throws produced either sand: mudstone juxtapositions or sand: sand contacts and fault zones with shale smears. Shale‐smeared fault zones provided seals to the reducing fluid which filled the structural traps to spill points.
The structure and content of the Moab Fault zone are described for 37 transects across the fault zone where throws range from less than 100m to c. 960m. The 45km long fault trace intersects a sedimentary sequence containing a high proportion of sandstones with good reservoir properties, interspersed with numerous mudstone layers. Typically, the fault zone is bounded by two external slip zones with the fault zone components separated by up to nine internal slip zones. Fault zone components are tabular lenses of variably deformed sandstones and sandstone cataclasites and breccia, with a wide size range, usually enclosed in a matrix of shaley fault gouge containing mm to m scale entrained sandstone fragments. Neither fault zone structure nor content can be predicted by extrapolation over distances as little as 10m. Although variable in thickness, shaley gouge is always present except where the mudstone is
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.