We investigate the leading-order amplitudes for weak radiative decays of
hyperons in chiral perturbation theory. We consistently include contributions
from the next-to-leading order weak-interaction Lagrangian. It is shown that
due to these terms Hara's theorem is violated. The data for the decays of
charged hyperons can be easily accounted for. However, at this order in the
chiral expansion, the four amplitudes for the decays of neutral hyperons
satisfy relations which are in disagreement with the data. The asymmetry
parameters for all the decays can not be accounted for without higher-order
terms. We shortly comment on the effect of the 27-plet part of the weak
interaction.Comment: 8 pages of REVTeX and using macro-package "feynman.tex" (available at
http://xxx.lanl.gov/ftp/hep-ph/papers/macros) for the 2 figure
The inclusive and fiducial tt production crosssections are measured in the lepton+jets channel using 20.2 fb −1 of proton-proton collision data at a centre-ofmass energy of 8 TeV recorded with the ATLAS detector at the LHC. Major systematic uncertainties due to the modelling of the jet energy scale and b-tagging efficiency are constrained by separating selected events into three disjoint regions. In order to reduce systematic uncertainties in the most important background, the W + jets process is modelled using Z + jets events in a data-driven approach. The inclusive tt cross-section is measured with a precision of 5.7% to be σ inc (tt) = 248.3 ± 0.7 (stat.) ± 13.4 (syst.) ± 4.7 (lumi.) pb, assuming a top-quark mass of 172.5 GeV. The result is in agreement with the Standard Model prediction. The crosssection is also measured in a phase space close to that of the selected data. The fiducial cross-section is σ fid (tt) = 48.8 ± 0.1 (stat.) ± 2.0 (syst.) ± 0.9 (lumi.) pb with a precision of 4.5%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.