Recently, bovine coronavirus (BCV) has been isolated from new cattle arrivals to feedlots, but the association between respiratory and enteric infections with BCV in feedlot cattle remains uncertain. Fecal and nasal swab samples from 85 Ohio Agricultural Research and Development Center (OARDC) feedlot cattle averaging 7 months of age were collected at arrival (0) and at 4, 7, 14, and 21 days postarrival (DPA). An antigen capture enzyme-linked immunosorbent assay (ELISA) was used to detect concurrent shedding of BCV in fecal and nasal samples. All samples ELISA positive for BCV were matched with an equal number of BCV ELISA-negative samples and analyzed by reverse transcription-polymerase chain reaction (RT-PCR) of the N gene. Paired sera were collected at arrival and 21 DPA and tested for antibodies to BCV using an indirect ELISA. Information on clinical signs, treatments provided, and cattle weights were collected. The overall rates of BCV nasal and fecal shedding were 48% (41/85) and 53% (45/85) by ELISA and 84% (71/85) and 96% (82/85) by RT-PCR, respectively. The peak of BCV nasal and fecal shedding occurred at 4 DPA. Thirty-two cattle (38%) showed concurrent enteric and nasal shedding detected by both tests. Eleven percent of cattle had antibody titers against BCV at 0 DPA and 91% of cattle seroconverted to BCV by 21 DPA. The BCV fecal and nasal shedding detected by ELISA and RT-PCR were statistically correlated with ELISA antibody seroconversion (P < 0.0001); however, BCV fecal and nasal shedding were not significantly related to clinical signs. Seroconversion to BCV was inversely related to average daily weight gains (P < 0.06). Twenty-eight respiratory and 7 enteric BCV strains were isolated from nasal and fetal samples of 32 cattle in HRT-18 cell cultures. These findings confirm the presence of enteric and respiratory BCV infections in feedlot calves. Further studies are needed to elucidate the differences between enteric and respiratory strains of BCV and their role in the bovine respiratory disease complex of feedlot cattle.
Feedlot cattle infected with BCV after transport shed BCV from the respiratory tract and in the feces. Fecal shedding of BCV was associated with significantly reduced weight gain. Developing appropriate control measures for BCV infections could help reduce the decreased weight gain observed among infected feedlot cattle.
Seventy-three crossbred steers (initial BW = 170.5 +/- 5.5 kg) from The Ohio State University (Exp. 1) and 216 crossbred steers (initial BW 135.4 +/- 4.4 kg) from the University of Illinois (Exp. 2) were used to determine the effect of source of energy and rate of growth on performance, carcass characteristics, and glucose and insulin profiles on early-weaned steers. Effects of the diets used in Exp. 1 and 2 on ruminal pH and VFA concentrations were quantified using ruminally fistulated steers (Exp. 3). Cattle were weaned at an average age of 119 d in all experiments and were allotted by age, BW, and breed to one of four diets: high-concentrate, fed ad libitum (ALCONC), high-concentrate fed to achieve a gain of either 1.2 kg/d (1.2CONC) or 0.8 kg/d (0.8CONC), or high-fiber, fed ad libitum (ALFIBER). At 218 d of age, all steers were placed on the ALCONC diet until slaughter. Steers were implanted with Compudose at the initiation of all experiments and with Revalor-S when they were estimated to be 100 d from slaughter. When steers in Exp. 1 averaged 181 and 279 d of age, serum samples were collected to determine glucose and insulin concentrations. Steers were slaughtered when a fat thickness of 1.27 cm was reached (Exp. 1) or after 273 d on feed (Exp. 2). In Exp. 1, days in the feedlot (P < 0.01) and age at slaughter (P < 0.01) were lowest for ALCONC and ALFIBER steers, and greatest for 0.8CONC steers. Overall, ADG was greatest for ALCONC and lowest for 0.8CONC steers; feed efficiency was lowest (P < 0.01) for ALFIBER steers. Final BW did not differ (P > 0.57) among treatments. At 181 and 218 d of age, serum insulin was increased (P < 0.10) and intramuscular fat percentage was greatest (P < 0.07), respectively, for ALCONC steers. In Exp. 2, overall ADG (P < 0.06) and final BW (P < 0.04) were greatest for ALCONC and lowest for 1.2CONC and 0.8CONC steers. Overall feed efficiency was greatest for 0.8CONC and lowest for ALFIBER (P < 0.01). Growing phase diet did not affect marbling score at 218 d of age or at slaughter (P > 0.81). In Exp. 3, differences in ruminal pH after feeding may have been a consequence of increasing acetate (ALFIBER), propionate (ALCONC), or a combination of VFA (0.8CONC and 1.2CONC), respectively (diet x time after feeding, P < 0.10). Controlling growth by limit-feeding a high-concentrate diet for only 100 d does not extend the growth curve of early-weaned steers or enhance intramuscular fat deposition at slaughter compared to ad libitum intake of a high-concentrate or high-fiber diet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.