Claeskens and Hjort (2003) constructed the focused information criterion FIC and developed frequentist model averaging methods using maximum likelihood estimators assuming the observations to be independent and identically distributed. Towards the immediate extensions and generalizations of these results, the present article is aimed at providing the focused model selection and model averaging methods using general maximum likelihood type estimators, popularly known as M -estimators. The necessary asymptotic theory is derived in a setup of stationary and strong mixing stochastic processes employing von Mises functional calculus of empirical processes and Le Cam's contiguity lemmas. We illustrate the proposed focused stochastic modeling methods using three well-known spacial cases of M -estimators, namely, conditional maximum likelihood estimators, conditional least square estimators and estimators based on method of moments. For the sake of simulation exercises, we consider two simple applications of FIC. The first application discusses the simultaneous selection of order of autoregression and symmetry of innovations in asymmetric Laplace autoregressive models. The second application demonstrates the FIC based choice between general scale-shape Gamma density and exponential density with shape being unity. We observe that in terms of the correct selections, FIC outperforms classical Akaike's information criterion AIC and performs at par with Bayesian information criterion BIC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.