The preceding papers of this series were devoted to the identification and quantification of the main chemical changes resulting from the radiochemical ageing of EPDM (77.9% ethylene, 21.4% propylene, 0.7% diene) and EPR (76.6% ethylene, 23.4% propylene) films irradiated under oxygen atmosphere using 60 Co grays. It was shown that two processes are involved in the EPDM radio-oxidation. The random g-radiolysis of the polymer provides a constant source of macro-alkyl radicals that are likely to initiate a selective oxidation of the polymer through free-radicals reactions involving the abstraction of labile hydrogen atoms. In the present paper, infrared spectroscopy has been used to study the g-degradation of EPDM cross-linked with dicumyl peroxide and/or stabilised with two types of anti-oxidants (hindered phenol or amine-type). The results show that the anti-oxidants are not efficient in preventing oxidation. To understand the lack of efficiency of the stabilisers, the impacts of the various formulations on the rate of degradation of EPDM against chain oxidation involved in thermal and UV ageing were also studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.