The self-healing of a crack in a glass-boron composite has been observed by X-ray nanotomography. It shows the occurrence of a healing effect within the bulk of the composite, despite of a limited oxygen access in the crack. This 3D tomographic observation offers new insights in the mechanism of healing, complementary to in situ high-temperature environmental scanning electron microscopy. In addition, nano-X-ray fluorescence imaging, electron microprobe and solid-state NMR gave evidence that the molten B 2 O 3 , produced by the oxidation of boron particles at 700°C, reacts with the glass matrix to form borosilicate compounds that also contribute to heal the crack. The high viscosity of B 2 O 3 at 700°C leads to the formation of bridges between the walls of the crack, which limit oxygen diffusion. Thus, the B particle oxidation is not completed after a single healing cycle, meaning that several healing cycles can be obtained in a composite.
Glass thin films (with nanometer to micrometer thicknesses) are promising in numerous applications, both as passive coatings and as active components. Self-healing is a feature of many current technological developments as a means of increasing the lifetime of materials. In the context of these developments, we report on the elaboration of the first self-healing glassy thin-film coating developed specifically for high-temperature applications. This coating is obtained by pulsed laser deposition of alternating layers of vanadium boride (VB) and a multicomponent oxide glass. Self-healing is obtained through the oxidation of VB at the operating temperature. The investigation of the effect of elaboration parameters on the coating composition and morphology made it possible to obtain up to seven-layer coatings, with good homogeneity and perfect interfaces, and with a total thickness of less than 1 μm. The autonomic self-healing capacity of the coating has been demonstrated by an in situ experiment, which shows that a crack of nanometric dimension can be healed within a few minutes at 700 °C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.