The Transiting Exoplanet Survey Satellite (TESS) will be conducting a nearly all-sky photometric survey over two years, with a core mission goal to discover small transiting exoplanets orbiting nearby bright stars. It will obtain 30 minute cadence observations of all objects in the TESS fields of view, along with two-minute cadence observations of 200,000-400,000 selected stars. The choice of which stars to observe at the two-minute cadence is driven by the need to detect small transiting planets, which leads to the selection of primarily bright, cool dwarfs. We describe the catalogs assembled and the algorithms used to populate the TESS Input Catalog (TIC), including plans to update the TIC with the incorporation of the Gaia second data release in the near future. We also describe a ranking system for prioritizing stars according to the smallest transiting planet detectable, and assemble a Candidate Target List (CTL) using that ranking. We discuss additional factors that affect the ability to photometrically detect and dynamically confirm small planets, and we note additional stellar populations of interest that may be added to the final target list. The TIC is available on the STScI MAST server, and an enhanced CTL is available through the Filtergraph data visualization portal system at the URL http://filtergraph.com/tess_ctl.
We present new calculations that strongly reinforce the idea-originally proposed by Charpinet et al.-that pulsation modes are driven through an opacity bump due to a local enhancement of the iron abundance in the envelopes of sdB stars. Our improved models incorporate nonuniform iron abundance distributions obtained through the condition of diffusive equilibrium between gravitational settling and radiative levitation. They also include special Rosseland opacity tables that take into account the large variations of the iron abundance about the cosmic value that are predicted by equilibrium radiative levitation theory. For representative models with M ϭ 0.48 M J and log g ϭ 5.8, we find strong instabilities for low-order radial and nonradial ( p and f) pulsation modes in the range 36,500 K ? T eff ? 29,000 K. The four pulsating sdB stars currently known all have effective temperatures in that range. In addition, one of our models with T eff ϭ 34,000 K has a band of unstable modes with periods in the range 116 -195 s, in excellent agreement with those of the known pulsators. We therefore claim that our proposed iron bump mechanism provides a natural explanation for the instabilities found in the newly discovered class of pulsating sdB stars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.