Controlling the microstructure in the final product is significant to metal hot forming at either macroscale or microscale. The microstructure evolution during the hot forming must be fundamentally understood in order to control the microstructure. Elevated temperature contributes to minimize the size-effects of microforming processes and also enlarge the forming limits by microforming. Recrystallization and grain growth during microextrusion at elevated temperature followed by air-cooling were studied using conventional recrystallization theory models and finite element methods. The results showed the microstructure distribution in the extruded billet can be rationally predicted based on the conventional recrystallization theory models. The simulation of the grain size distribution agreed with the experiment. A larger extrusion ratio, a faster extrusion speed and a refiner initial grain all help to obtain a smaller grain size and a more homogeneous grain distribution in the extruded billet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.