We present the spectroscopic and photometric study of five intermediate-luminosity red transients (ILRTs), namely AT 2010dn, AT 2012jc, AT 2013la, AT 2013lb, and AT 2018aes. They share common observational properties and belong to a family of objects similar to the prototypical ILRT SN 2008S. These events have a rise time that is less than 15 days and absolute peak magnitudes of between −11.5 and −14.5 mag. Their pseudo-bolometric light curves peak in the range 0.5–9.0 × 1040 erg s−1 and their total radiated energies are on the order of (0.3–3) × 1047 erg. After maximum brightness, the light curves show a monotonic decline or a plateau, resembling those of faint supernovae IIL or IIP, respectively. At late phases, the light curves flatten, roughly following the slope of the 56Co decay. If the late-time power source is indeed radioactive decay, these transients produce 56Ni masses on the order of 10−4 to 10−3 M⊙. The spectral energy distribution of our ILRT sample, extending from the optical to the mid-infrared (MIR) domain, reveals a clear IR excess soon after explosion and non-negligible MIR emission at very late phases. The spectra show prominent H lines in emission with a typical velocity of a few hundred km s−1, along with Ca II features. In particular, the [Ca II] λ7291,7324 doublet is visible at all times, which is a characteristic feature for this family of transients. The identified progenitor of SN 2008S, which is luminous in archival Spitzer MIR images, suggests an intermediate-mass precursor star embedded in a dusty cocoon. We propose the explosion of a super-asymptotic giant branch star forming an electron-capture supernova as a plausible explanation for these events.
Roughly 10% of quasars are “radio-loud,” producing copious radio emission in large jets. The origin of the low-level radio emission seen from the remaining 90% of quasars is unclear. Observing a sample of eight radio-quiet quasars with the Very Long Baseline Array, we discovered that their radio properties depend strongly on their Eddington ratio r Edd ≡ L AGN/L Edd. At lower Eddington ratios r Edd ≲ 0.3, the total radio emission of the AGN predominately originates from an extremely compact region, possibly as small as the accretion disk. At higher Eddington ratios (r Edd ≳ 0.3), the relative contribution of this compact region decreases significantly, and though the total radio power remains about the same, the emission now originates from regions ≳100 pc in size. The change in the physical origin of the radio-emitting plasma region with r Edd is unexpected, as the properties of radio-loud quasars show no dependence with Eddington ratio. Our results suggest that at lower Eddington ratios the magnetized plasma is likely confined by the accretion disk corona and only at higher Eddington ratios escapes to larger scales. Stellar-mass black holes show a similar dependence of their radio properties on the accretion rate, supporting the paradigm that unifies the accretion onto black holes across the mass range.
Materials and construction methods of nests vary between bird species and at present, very little is known about the relationships between architecture and function in these structures. This study combines computational and experimental techniques to study the structural biology of nests fabricated by the edible nest swiftlet Aerodramus fuciphagus on vertical rock walls using threaded saliva. Utilizing its own saliva as a construction material allows the swiftlets full control over the structural features at a very high resolution in a process similar to additive manufacturing. It was hypothesized that the mechanical properties would vary between the structural regions of the nest (i.e. anchoring to the wall, center of the cup, and rim) mainly by means of architecture to offer structural support and bear the natural loads of birds and eggs. We generated numerical models of swiftlet nests from μCT scans based on collected swiftlet nests, which we loaded with a force of birds and eggs. This was done in order to study and assess the stress distribution that characterizes the specific nest’s architecture, evaluate its strength and weak points if any, as well as to understand the rationale and benefits that underlie this natural structure. We show that macro- and micro-scale structural patterns are identical in all nests, suggesting that their construction is governed by specific design principles. The nests’ response to applied loads of birds and eggs in finite element simulations suggests a mechanical overdesign strategy, which ensures the stresses experienced by its components in any loading scenario are actively minimized to be significantly smaller than the tensile fracture strength of the nests’ material. These findings highlight mechanical overdesign as a biological strategy for resilient, single-material constructions designed to protect eggs and hatchlings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.