Summary Bacillus species are widely recognized as good industrial platform strains, which can produce a variety of valuable products including enzymes and functional proteins. Bacillus expression systems gain various competitive edges over other expression systems, with respect to nontoxicity, convenience for gene modification and high yield of target proteins. Recently, a number of Bacillus expression systems have been developed, and various strategies were conducted to improve the yields of target proteins. In this review, we focused on the strategies of host strain optimization for heterologous protein production, including secretion pathway optimization, RNA and protein stability enhancement, cell growth facilitation, genome streamlining and transcriptional regulator engineering. In addition, Bacillus spore surface display and food‐grade expression systems were developed to expand the application of Bacillus expression system in recent years. Finally, the challenges and prospects of Bacillus expression system were discussed regarding the recent progresses, challenges and trends in this field.
In 2011 and 2012, significant brown rot disease caused by Monilinia fructicola was observed in a peach orchard in Spartanburg County, SC, despite preharvest fungicide applications of demethylation inhibitor (DMI), quinone outside inhibitor (QoI), and succinate dehydrogenase inhibitor (SDHI) fungicides. All 22 isolates obtained in 2011 from this orchard were sensitive to the QoI fungicide, azoxystrobin, and the methyl benzimidazole carbamate (MBC) fungicide, thiophanate-methyl. Five were resistant to the DMI fungicide, propiconazole, and were selected, together with five propiconazole-sensitive isolates, for further investigations. One of the 10 isolates was resistant to propiconazole but sensitive to the SDHI fungicide, boscalid (EC50 = 0.42 μg/ml), 3 were resistant to propiconazole with intermediate sensitivity to boscalid (EC50 0.72 to 2.1 μg/ml); 2 were sensitive to propiconazole with intermediate sensitivity to boscalid; 3 were sensitive to propiconazole but resistant to boscalid (EC50 ≥ 2.1 μg/ml); and 1 (isolate MD22) was resistant to both propiconazole and boscalid. Disease incidence on detached fruit treated with formulated propiconazole or boscalid was significantly higher for MD22 compared to a sensitive control isolate. Continued monitoring of fungicide resistance in the same orchard in 2012 revealed an increase of isolates resistant to propiconazole from 22.7% in 2011 to 34.7%, and an increase of isolates resistant to both propiconazole and boscalid from 4.5% in 2011 to 18.4%. Propiconazole resistance was always associated with the presence of the ‘Mona’ mobile element located upstream of the sterol 14α-demethylase (MfCYP51) gene. To investigate whether mutations in the subunits of the succinate dehydrogenase enzyme were involved in boscalid resistance, significant portions of the M. fructicola SdhA, SdhB, SdhC, and SdhD genes were cloned and analyzed for 2 sensitive, 2 boscalid-resistant, and 6 dual-resistant isolates. Although sequence variation was found among the isolates, no single change correlated with resistance. Interestingly, analysis of isolates collected from orchards in 2001 and 2002, prior to the registration of boscalid, revealed a range of sensitivities to boscalid (EC50 0.03 to 3.46 μg/ml) including boscalid-resistant isolates. The presence of boscalid-resistant isolates in the baseline population was unexpected and requires further investigation.
Summary Length‐weight relationships were estimated for five Triplophysa species from the northwest China. A total of 1,598 specimens were collected using set gillnets (mesh size 1.5 cm) and ground bamboo cages in May 2012, and August 2014. This study presents the first references on LWRs for Triplophysa minuta, T. siluroides, and T. tenuis, and two new maximum length records for T. yarkandensis and T. strauchii. Statistical length–weight relationships for all five species were highly significant (p < .001), with R2 values >.915.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.