A variety of continuous and pulsed arterial spin labeling (ASL) perfusion MRI techniques have been demonstrated in recent years. One of the reasons these methods are still not routinely used is the limited extent of the imaging region. Of the ASL methods proposed to date, continuous ASL (CASL) with a separate labeling coil is particularly attractive for whole-brain studies at high fields. This approach can provide an increased signal-to-noise ratio (SNR) in perfusion images because there are no magnetization transfer (MT) effects, and lessen concerns regarding RF power deposition at high field because it uses a local labeling coil. In this work, we demonstrate CASL whole-brain quantitative perfusion imaging at 3.0 T using a combination of strategies: 3D volume acquisition, background tissue signal suppression, and a separate labeling coil. The results show that this approach can be used to acquire perfusion images in all brain regions with good sensitivity. Further, it is shown that the method can be performed safely on humans without exceeding the current RF power deposition limits. The current method can be extended to higher fields, and further improved by the use of multiple receiver coils and parallel imaging techniques to reduce scan time or provide increased resolution.
The use of magnetization transfer contrast (MTC) in magnetic resonance imaging of the human knee was evaluated in this study. MTC is generated by irradiating the macromolecular protons in tissue with a low power off-resonance radio-frequency field. This results in a decrease in water proton signal intensity where a tight magnetic coupling between water and macromolecules exists. With this approach, the authors have demonstrated that MTC can improve contrast in standard single-section, gradient-recalled-echo images of the knee with regard to fat-muscle and cartilage-synovial fluid comparisons. The effect of changes in repetition time, echo time, and flip angle were also quantitatively evaluated. More important, MTC was shown to generate useful cartilage-synovial fluid contrast on high-resolution three-dimensional images, in which contrast is difficult to generate. This approach may not only provide better structural information about the knee, but may also provide noninvasive insight into the structure and biochemical composition of cartilage in vivo.
SummaryTwo-photon excitation fluorescence microscopy and backscattered-second harmonic generation microscopy permit the investigation of the subcellular events within living animals but numerous aspects of these experiments need to be optimized to overcome the traditional microscope geometry, motion and optical coupling to the subject. This report describes a stable system for supporting a living instrumented mouse or rabbit during endogenous reduced nicotinamide adenine dinucleotide and exogenous dye two-photon excitation fluorescence microscopy measurements, and backscattered-second harmonic generation microscopy measurements. The system was a modified inverted LSM510 microscope (Carl Zeiss, Inc., Thornwood, NY, U.S.A.) with a rotating periscope that converted the inverted scope to an upright format, with the objective located approximately, 15 cm from the centre of the microscope base, allowing easy placement of an instrumented animal. An Olympus 20 × water immersion objective was optically coupled to the tissue, without a cover glass, via a saline bath or custom hydrated transparent gel. The instrumented animals were held on a specially designed holder that poised the animal under the objective as well as permitted different ventilation schemes to minimize motion. Using this approach, quality images were routinely collected in living animals from both the peripheral and body cavity organs. The remaining most significant issue for physiological studies using this approach is motion on the micrometre scale. Several strategies for motion compensation are described and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.