The 6 main milk proteins in cattle are encoded by highly polymorphic genes characterized by several nonsynonymous and synonymous mutations, with up to 47 protein variants identified. Such an extensive variation was used for linkage analysis with the description of the casein cluster more than 30 yr ago and has been applied to animal breeding for several years. Casein haplotype effects on productive traits have been investigated considering information on the whole casein complex. Moreover, mutations within the noncoding sequences have been shown to affect the specific protein expression and, as a consequence, milk composition and cheesemaking. Milk protein variants are also a useful tool for breed characterization, diversity, and phylogenetic studies. In addition, they are involved in various aspects of human nutrition. First, the occurrence of alleles associated with a reduced content of different caseins might be exploited for the production of milk with particular nutritional qualities; that is, hypoallergenic milk. On the other hand, the frequency of these alleles can be decreased by selection of sires using simple DNA tests, thereby increasing the casein content in milk used for cheesemaking. Furthermore, the biological activity of peptides released from milk protein digestion can be affected by amino acid exchanges or deletions resulting from gene mutations. Finally, the gene-culture coevolution between cattle milk protein genes and human lactase genes, which has been recently highlighted, is impressive proof of the nonrandom occurrence of milk protein genetic variation over the centuries.
There is an urgent need to understand the behavior of the novel coronavirus (SARS-COV-2), which is the causative agent of COVID-19, and to develop point-of-care diagnostics. Here, a glyconanoparticle platform is used to discover that N -acetyl neuraminic acid has affinity toward the SARS-COV-2 spike glycoprotein, demonstrating its glycan-binding function. Optimization of the particle size and coating enabled detection of the spike glycoprotein in lateral flow and showed selectivity over the SARS-COV-1 spike protein. Using a virus-like particle and a pseudotyped lentivirus model, paper-based lateral flow detection was demonstrated in under 30 min, showing the potential of this system as a low-cost detection platform.
Milk fatty acid composition is a parameter of great interest for evaluation of nutritional quality of milk. Stearoyl-CoA desaturase (SCD) is a key enzyme in mammary lipid metabolism because it is able to add a double bond in the cis delta9-position in a large spectrum of medium- and long-chain fatty acids. A polymorphism with 2 alleles (A and V) in the fifth exon of the SCD gene has been reported. The effect of SCD genotype on individual milk fatty acid composition and on cis-9 unsaturated/saturated fatty acid ratios of 297 Holstein Italian Friesian cows was investigated in this paper. The SCD genotypes were determined by using a single strand conformation polymorphism method. Relative frequencies of SCD genotypes were 27, 60, and 13% for AA, AV, and VV, respectively. Milk of AA cows had a greater content of cis-9 C18:1 and total monounsaturated fatty acids and a higher C14:1/C14 ratio than did milk of VV cows. The relative contribution of SCD genotype to variation of monounsaturated fatty acids, cis-9 C18:1, and cis-9 C14:1 was 5, 4, and 7.7%, respectively. No significant differences were detected between SCD genotypes in the milk content of cis-9, trans-11 C18:2. Results of the present work provide some indication of an association between SCD locus and the fatty acid profile in the examined sample of Italian Holsteins, thus suggesting a possible role of this gene in the genetic variation of milk nutritional properties.
The analysis of casein polymorphisms in goat species is rather difficult, because of a large number of mutations at each locus, and the tight linkage involving the 4 casein genes. Three goat breeds from Northern Italy, Orobica, Verzasca, and Frisa, were analyzed at the casein complex by milk isoelectrofocusing and analyses at the DNA level to identify the majority of all known polymorphisms. The casein gene structure of the 3 local breeds at alpha(S1)-casein (CSN1S1), beta-casein (CSN2), alpha(S2)-casein (CSN1S2), and kappa-casein (CSN3) was compared with that of Camosciata, a more widely distributed breed. A new allele was identified and characterized at CSN2 gene, which seemed to be specific to the Frisa breed. It was named CSN2*E, and was characterized by a transversion TCT --> TAT responsible for the amino acid exchange Ser(166) --> Tyr(166) in the mature protein. The casein haplotype structure is highly different among breeds. A total of 26 haplotypes showed a frequency higher than 0.01 in at least 1 of the 4 breeds considered, with 12, 3, 5, and 19 haplotypes in Frisa, Orobica, Verzasca, and Camosciata breeds, respectively. Only 13 haplotypes occurred at a frequency higher than 0.05 in at least 1 breed. With the molecular knowledge of each locus, the ancestral haplotype coding for CSN1S1*B, CSN2*A, CSN1S2*A, and CSN3*B protein variants can be postulated. A protein evolutionary model considering the whole casein haplotype is proposed.
The aim of this work was to investigate the genetic structure of the casein gene cluster in 5 Italian goat breeds and to evaluate the haplotype variability within and among populations. A total of 430 goats from Vallesana, Roccaverano, Jonica, Garganica, and Maltese breeds were genotyped at α s1 -casein (CSN1S1), α s2 -casein, (CSN1S2), β-casein (CSN2), and κ-casein (CSN3) loci using several genomic techniques and milk protein analysis. Casein haplotype frequencies were estimated for each breed. Principal component analysis was carried out to highlight the relationship among breeds. Allele and haplotype distributions indicated considerable differences among breeds. The haplotype CSN1S1*F-CSN1S2*F-CSN3*D occurred in all breeds with frequencies >0.100 and was the most common haplotype in the Southern breeds. A high frequency of CSN1S1*0-CSN1S2*C-CSN3*A haplotype was found in Vallesana population (0.162). Principal component analysis clearly separated the Northern and Southern breeds by the first component. The variability of the caprine casein loci and variety of resulting haplotypes should be exploited in the future using specific breeding programs aiming to preserve biodiversity and to select goat genetic lines for specific protein production. (Key words: goat, casein, polymorphism, haplotype) Abbreviation key: AS-PCR = allele specific-PCR, CSN1S1 = α s1 -casein locus, CSN1S2 = α s2 -casein locus, CSN3 = κ-casein locus, CSN2 = β-casein locus, IEF = isoelectrofocusing, PCR-SSCP = PCR-single strand conformational polymorphism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.