Interventional radiologists and staff members, during all their professional activities, are frequently exposed to protracted and fractionated low doses of ionizing radiation. Due to skin tissues and peripheral blood irradiation, these exposures can result in deterministic effects (radiodermatitis, aged skin, and hand depilation) or stochastic ones (skin and non-solid cancer incidence). The authors present a novel approach to perform online monitoring of the staff during their interventions by using a device based on an Active Pixel Sensor. The performance of the sensor as an X-ray radiation detector has been evaluated with a proper experimental setup: the number of photons and the generated charge have been assessed as dosimetric observables from the frames acquired by the sensor using a two-threshold clustering algorithm, the efficiency of which has been evaluated as well. The correlation of these observables with passive dosimeter dose measurements has been analyzed: a good linearity has been demonstrated, and the response difference between pulsed and continuous operational modes is reduced to less than 10%, marking a distinct improvement with respect to commercial Active Personal Dosimeters.Index Terms-Active Personal Dosimeter, CMOS pixels, dosimetry, interventional radiology (IR), X-ray.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.