The LHCb experiment is dedicated to precision measurements of CP violation and rare decays of B hadrons at the Large Hadron Collider (LHC) at CERN (Geneva). The initial configuration and expected performance of the detector and associated systems, as established by test beam measurements and simulation studies, is described.
NA62 is a fixed-target experiment at the CERN SPS dedicated to measurements of rare kaon decays. Such measurements, like the branching fraction of the K+ → π+ ν ν̄ decay, have the potential to bring significant insights into new physics processes when comparison is made with precise theoretical predictions. For this purpose, innovative techniques have been developed, in particular, in the domain of low-mass tracking devices. Detector construction spanned several years from 2009 to 2014. The collaboration started detector commissioning in 2014 and will collect data until the end of 2018. The beam line and detector components are described together with their early performance obtained from 2014 and 2015 data.
The authors describe a VLSI processor for pattern recognition based on content addressable memory (CAM) architecture, optimized for on-line track finding in high-energy physics experiments. A large CAM bank stores all trajectories of interest and extracts the ones compatible with a given event. This task is naturally parallelized by a CAM architecture able to output identified trajectories, searching for matches on 96-bit wide patterns, in just a few 40-MHz clock cycles. We have developed this device (called the AMchip03 processor) for the silicon vertex trigger (SVT) upgrade at the Collider Detector experiment at Fermilab (CDF) using a standard-cell VLSI design methodology. This approach provides excellent pattern density, while sparing many of the complexities and risks associated to a full-custom design. The cost/performance ratio is better by well more than one order of magnitude than an FPGA-based design. This processor has a flexible and easily configurable structure that makes it suitable for applications in other experimental environments. They look forward to sharing this technology.Index Terms-Parallel processing, particle tracking, pattern matching, triggering, very large scale integration (VLSI).
A: The GigaTracKer (GTK) is the beam spectrometer of the CERN NA62 experiment. The detector features challenging design specifications, in particular a peak particle flux reaching up to 2.0 MHz/mm 2 , a single hit time resolution smaller than 200 ps and, a material budget of 0.5% X 0 per tracking plane. To fulfil these specifications, novel technologies were especially employed in the domain of silicon hybrid time-stamping pixel technology and micro-channel cooling. This article describes the detector design and reports on the achieved performance.
K: Particle tracking detectors, Timing detectors, Detector cooling and thermo-stabilization A X P : 1904.12837 1present address:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.