This paper presents the details of studies conducted on brick masonry units and wall panels. The investigation includes, compressive strength of brick unit, prisms, flexural strength evaluation, and testing of reinforced brick wall panels with and without opening. Nonlinear finite element analysis (FEA) of brick wall panels with and without opening has been carried out by simulating the actual test conditions. Constant vertical load is applied on the top of the wall panel and lateral load is applied in an incremental manner. The in-plane deformation is recorded under each incremental lateral load. Displacement ductility factors and response-reduction factors have been evaluated based on experimental results. From the experimental study, it is observed that fully reinforced wall panel without opening performed well compared to other types of wall panels in lateral load resistance and displacement ductility. In all the wall panels, shear cracks originated at loading point and moved toward the compression toe of the wall. The force-reduction factors of a wall panel with opening are much less when compared with fully reinforced wall panel with no opening. The displacement values obtained by nonlinear FEA were found to be in good agreement with the corresponding experimental values. The difference in the computed and experimental values is attributed to the influence of mortar joint which was not considered in FEA. The derived response-reduction factors will be useful for adopting elastoplastic design procedures for lateral forces generated due to earthquakes.
The need for usage of renewable resources is increased for last few years mainly to protect our environment and it can be harnessed by means of wind turbines. In the present study, a small model Horizontal Axis Wind Turbine (HAWT) to a geometric scale of 1:13 has been designed based on the BEM theory using Computer Aided Design and Drafting (CADD). The scaled model of HAWT corresponding to the CADD model has fabricated and tested in the wind tunnel. The details of fabrication process, experimental setup and torque and rpm for different wind speeds of the blade were studied and reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.