A new lipoprotein lipase-like gene has been cloned from endothelial cells through a subtraction methodology aimed at characterizing genes that are expressed with in vitro differentiation of this cell type. The conceptual endothelial cell-derived lipase protein contains 500 amino acids, including an 18-amino acid hydrophobic signal sequence, and is 44% identical to lipoprotein lipase and 41% identical to hepatic lipase. Comparison of primary sequence to that of lipoprotein and hepatic lipase reveals conservation of the serine, aspartic acid, and histidine catalytic residues as well as the 10 cysteine residues involved in disulfide bond formation. Expression was identified in cultured human umbilical vein endothelial cells, human coronary artery endothelial cells, and murine endothelial-like yolk sac cells by Northern blot. In addition, Northern blot and in situ hybridization analysis revealed expression of the endothelial-derived lipase in placenta, liver, lung, ovary, thyroid gland, and testis. A c-Myc-tagged protein secreted from transfected COS7 cells had phospholipase A1 activity but no triglyceride lipase activity. Its tissue-restricted pattern of expression and its ability to be expressed by endothelial cells, suggests that endothelial cell-derived lipase may have unique functions in lipoprotein metabolism and in vascular disease.
A new member of the lipase gene family, initially termed endothelial lipase (gene nomenclature, LIPG; protein, EL), is expressed in a variety of different tissues, suggesting a general role in lipid metabolism. To assess the hypothesis that EL plays a physiological role in lipoprotein metabolism in vivo, we have used gene targeting of the native murine locus and transgenic introduction of the human LIPG locus in mice to modulate the level of EL expression. Evaluation of these alleles in a C57Bl/6 background revealed an inverse relationship between HDL cholesterol level and EL expression. Fasting plasma HDL cholesterol was increased by 57% in LIPG–/– mice and 25% in LIPG+/– mice and was decreased by 19% in LIPG transgenic mice as compared with syngeneic controls. Detailed analysis of lipoprotein particle composition indicated that this increase was due primarily to an increased number of HDL particles. Phospholipase assays indicated that EL is a primary contributor to phospholipase activity in mouse. These data indicate that expression levels of this novel lipase have a significant effect on lipoprotein metabolism
Endothelial lipase (EL) expression correlates inversely with circulating high density lipoprotein (HDL) cholesterol levels in genetic mouse models, and human genetic variation in this locus has been linked to differences in HDL cholesterol levels. These data suggest a role for EL in the development of atherosclerotic vascular disease. To investigate this possibility, LIPG-null alleles were bred onto the apoE knockout background, and the homozygous double knockout animals were characterized. Both apoE knockout and double knockout mice had low HDL cholesterol levels when compared with wild-type mice, but the HDL cholesterol levels of the double knockout mice were higher than those of apoE knockout mice. Atherogenic very low density lipoprotein and intermediate density lipoprotein/low density lipoprotein cholesterol levels of the double knockout mice were also greater than those of the apoE knockout animals. Despite this lipid profile, there was a significant ϳ70% decrease in atherosclerotic disease area in double knockout mice on a regular diet. Immunohistochemistry and protein blot studies revealed increased EL expression in the atherosclerotic aortas of the apoE knockout animals. An observed decrease in macrophage content in vessels lacking EL correlated with ex vivo vascular monocyte adhesion assays, suggesting that this protein can modulate monocyte adhesion and infiltration into diseased tissues. These data suggest that EL may have indirect atherogenic actions in vivo through its effect on circulating HDL cholesterol and direct atherogenic actions through vascular wall processes such as monocyte recruitment and cholesterol uptake.
Interest in space habitation has grown dramatically with planning underway for the first human transit to Mars. Despite a robust history of domestic and international spaceflight research, understanding behavioral adaptation to the space environment for extended durations is scant. Here we report the first detailed behavioral analysis of mice flown in the NASA Rodent Habitat on the International Space Station (ISS). Following 4-day transit from Earth to ISS, video images were acquired on orbit from 16- and 32-week-old female mice. Spaceflown mice engaged in a full range of species-typical behaviors. Physical activity was greater in younger flight mice as compared to identically-housed ground controls, and followed the circadian cycle. Within 9–11 days after launch, younger (but not older), mice began to exhibit distinctive circling or ‘race-tracking’ behavior that evolved into a coordinated group activity. Organized group circling behavior unique to spaceflight may represent stereotyped motor behavior, rewarding effects of physical exercise, or vestibular sensation produced via self-motion. Affording mice the opportunity to grab and run in the RH resembles physical activities that the crew participate in routinely. Our approach yields a useful analog for better understanding human responses to spaceflight, providing the opportunity to assess how physical movement influences responses to microgravity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.