A circular disk resonator is used to study the gas sensing properties of carbon nanotubes. It detects the presence of gases based on the change in the dielectric constant rather than electrical conductivity of single walled carbon nanotubes (SWNTs) upon gas exposure. A conducting circular disk is coated with electric arc prepared SWNTs and degassed by heating under a high vacuum. It exhibits noticeable shifts in resonant frequency to both polar (NH3 and CO) and nonpolar gases (He, Ar, N2, and O2). Gas concentrations as low as 100 ppm can be detected using this sensor configuration.
We present the design and development of highly sensitive and fast-responsive microwave resonant sensors for monitoring the presence of ammonia gas. The sensor consists of a circular disk electromagnetic resonant circuit coated with either single- or multiwalled carbon nanotubes that are highly sensitive to adsorbed gas molecules. Upon exposure to ammonia, the electrical resonant frequency of the sensor exhibits a dramatic downshift of 4.375 MHz. The recovery and response times of these sensors are nominally 10 min. This technology is suitable for designing remote sensor systems to monitor gases inside sealed opaque packages and environmental conditions that do not allow physical wire connections.
Nanomaterials with disordered, ramified structure are increasingly being used for applications where low cost and enhanced performance are desired. A particular example is the use in printed electronics of inorganic conducting and semiconducting nanoparticles. The electrical, as well as other physical properties depend on the arrangement and connectivity of the particles in such aggregate systems. Quantification of aggregate structure and development of structure/property relationships is difficult and progress in the application of these materials in electronics has mainly been empirical. In this paper, a scaling model is used to parameterize the structure of printed electronic layers. This model has chiefly been applied to polymers but surprisingly it shows applicability to these nanolayers. Disordered structures of silicon nanoparticles forming aggregates are investigated using small angle x-ray scattering coupled with the scaling model. It is expected that predictions using these structural parameters can be made for electrical properties. The approach may have wide use in understanding and designing nano-aggregates for electronic devices.
There is an increasing demand for robust, miniaturized sensors with ppm or parts per 10 9 ͑ppb͒ sensing capability, and high selectivity to different chemical or biological species. Here we show that trace amounts ͑ppb͒ of gases or organic solvent vapors can be detected with high selectivity and sensitivity using single-walled carbon nanotube bundles in a resonator configuration. The enhanced sensing properties result from a change in the effective dielectric properties of the resonator when exposed to different gas environments. A theoretical model is described which computes resonant frequency shifts that are in remarkable agreement with corresponding experimental shifts exhibited by the resonator when exposed to different gas molecules. This work demonstrates a gas-sensing platform with superior sensitivity and selectivity for gas detection, and presents advantages in terms of portability and recovery time. In particular, the sensing platform does not require functionalized carbon nanotubes to enhance specificity, or wire connection to the nanotubes making it attractive for remote sensor technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.