Many tumors exhibit elevated chromosome mis-segregation termed chromosome instability (CIN), which is likely to be a potent driver of tumor progression and drug resistance. Causes of CIN are poorly understood but probably include prior genome tetraploidization, centrosome amplification and mitotic checkpoint defects. This study identifies epigenetic alteration of the centromere as a potential contributor to the CIN phenotype. The centromere controls chromosome segregation and consists of higher-order repeat (HOR) alpha-satellite DNA packaged into two chromatin domains: the kinetochore, harboring the centromere-specific H3 variant centromere protein A (CENP-A), and the pericentromeric heterochromatin, considered important for cohesion. Perturbation of centromeric chromatin in model systems causes CIN. As cancer cells exhibit widespread chromatin changes, we hypothesized that pericentromeric chromatin structure could also be affected, contributing to CIN. Cytological and chromatin immunoprecipitation and PCR (ChIP-PCR)-based analyses of HT1080 cancer cells showed that only one of the two HORs on chromosomes 5 and 7 incorporate CENP-A, an organization conserved in all normal and cancer-derived cells examined. Contrastingly, the heterochromatin marker H3K9me3 (trimethylation of H3 lysine 9) mapped to all four HORs and ChIP-PCR showed an altered pattern of H3K9me3 in cancer cell lines and breast tumors, consistent with a reduction on the kinetochore-forming HORs. The JMJD2B demethylase is overexpressed in breast tumors with a CIN phenotype, and overexpression of exogenous JMJD2B in cultured breast epithelial cells caused loss of centromere-associated H3K9me3 and increased CIN. These findings suggest that impaired maintenance of pericentromeric heterochromatin may contribute to CIN in cancer and be a novel therapeutic target.
Human artificial chromosomes (HACs) were generated by transfer of telomerized PAC constructs containing alpha satellite DNA of various human chromosomes. To monitor which cells took up constructs and subsequently formed stable clones under blasticidin S (BS) selection, a CMV/EGFP expression cassette was inserted into a HAC construct based on chromosome 5 alpha satellite DNA (142 kb). Lipofection into HT1080 cells resulted in a small proportion of cells exhibiting bright green fluorescence on day 1. Areas containing such early green cells were marked, and plates monitored over 2 weeks. In only one out of 41 marked areas, a viable clone developed. In the remaining 40 areas, the green cells ceased division at 1–8 cells. In contrast, outside the marked areas, 16 stable clones formed which did not exhibit green fluorescence during the first cell divisions, but all cells of each became green around day 4–6. Fluorescence in situ hybridization (FISH) analysis of isolated clonal lines demonstrated low copy HAC formation without integration. We conclude that transient expression of an EGFP marker on HAC DNA is not a suitable means for the identification of the proportion of transfected cells which are capable of forming viable clones. One explanation could be that the high copy number required to consistently detect transient EGFP expression (Schindelhauer and Laner, 2002) impairs viability and clone formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.