The principle of the equivalence of gravitational and inertial mass is one of the cornerstones of general relativity. Considerable efforts have been made and are still being made to verify its validity. A quantum-mechanical formulation of gravity allows for non-Newtonian contributions to the force which might lead to a difference in the gravitational force on matter and antimatter. While it is widely expected that the gravitational interaction of matter and of antimatter should be identical, this assertion has never been tested experimentally. With the production of large amounts of cold antihydrogen at the CERN Antiproton Decelerator, such a test with neutral antimatter atoms has now become feasible. For this purpose, we have proposed to set up the AEGIS experiment at 0168-583X/$ -see front matter Ó 2007 Published by Elsevier B.V.
We address estimation of one-parameter qubit gates in the presence of phase diffusion. We evaluate the ultimate quantum limits to precision, seek optimal probes and measurements, and demonstrate an optimal estimation scheme for polarization encoded optical qubits. An adaptive method to achieve optimal estimation in any working regime is also analyzed in detail and experimentally implemented.
The trace distance between two states of an open quantum system quantifies their distinguishability and, for a fixed environmental state, can increase above its initial value only in the presence of initial system-environment correlations. We provide experimental evidence of such a behavior. In our all-optical apparatus, we exploit spontaneous parametric down conversion as a source of polarization entangled states and a spatial light modulator to introduce in a general fashion correlations between the polarization and the momentum degrees of freedom, which act as environment.
Phase diffusion represents a crucial obstacle towards the implementation of high precision interferometric measurements and phase shift based communication channels. Here we present a nearly optimal interferometric scheme based on homodyne detection and coherent signals for the detection of a phase shift in the presence of large phase diffusion. In our scheme the ultimate bound to interferometric sensitivity is achieved already for a small number of measurements, of the order of hundreds, without using nonclassical light.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.