Rhenium diselenide (ReSe2) is a layered indirect gap semiconductor for which micromechanical cleavage can produce monolayers consisting of a plane of rhenium atoms with selenium atoms above and below. ReSe2 is unusual among the transition-metal dichalcogenides in having a low symmetry; it is triclinic, with four formula units per unit cell, and has the bulk space group P1̅. Experimental studies of Raman scattering in monolayer, few-layer, and bulk ReSe2 show a rich spectrum consisting of up to 16 of the 18 expected lines with good signal strength, pronounced in-plane anisotropy of the intensities, and no evidence of degradation of the sample during typical measurements. No changes in the frequencies of the Raman bands with layer thickness down to one monolayer are observed, but significant changes in relative intensity of the bands allow the determination of crystal orientation and of monolayer regions. Supporting theory includes calculations of the electronic band structure and Brillouin zone center phonon modes of bulk and monolayer ReSe2 as well as the Raman tensors determining the scattering intensity of each mode. It is found that, as for other transition-metal dichalcogenides, Raman scattering provides a powerful diagnostic tool for studying layer thickness and also layer orientation in few-layer ReSe2.
A long-standing discrepancy between experimental and theoretical values for the lifetimes of holes in the surface-state electron bands on noble metal surfaces is resolved; previous determinations of both are found to have been in error. The ability of the scanning tunneling microscope to verify surface quality before taking spectroscopic measurements is used to remove the effects of defect scattering on experimental lifetimes, found to have been a significant contribution to prior determinations. A theoretical treatment of inelastic electron-electron scattering is developed that explicitly includes intraband transitions within the surface state band. In our model, two-dimensional decay channels dominate the electron-electron interactions that contribute to the hole decay and are screened by the electron states of the underlying three-dimensional electron system.
Quasiparticle interactions broaden spectral features at surfaces, which can be measured using the scanning tunneling microscope (STM). We report the first study of lifetime effects on Shockley surfacestate electrons using low-temperature STM spectroscopy. Data taken from Ag(111) are analyzed using detailed tunneling calculations and a simple model, and are found to correspond to a self-energy of S 4.9 6 0.6 meV. This is considerably below values determined by angle-resolved photoemission, but remains higher than theoretical predictions. [S0031-9007(98)07612-1]
The electronic structure of artificial Mn atom arrays on Ag(111) is characterized in detail with scanning tunnelling spectroscopy and spectroscopic imaging at low temperature. We demonstrate the degree to which variations in geometry may be used to control spatial and spectral distributions of surface state electrons confined within the arrays, how these are influenced by atoms placed within the structure and how the ability to induce spectral features at specific energies may be exploited through lineshape analyses to deduce quasiparticle lifetimes near the Fermi level. Through extensive comparison of dI/dV maps and spectra we demonstrate the utility of a model based upon twodimensional s-wave scatterers for describing and predicting the characteristics of specific resonators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.