We study the evaporation of (4 n)-dimensional rotating black holes into scalar degrees of freedom on the brane. We calculate the corresponding absorption probabilities and cross sections obtaining analytic solutions in the low-energy regime and compare the derived analytic expressions to numerical results, with very good agreement. We then consider the high-energy regime, construct an analytic high-energy solution to the scalar-field equation by employing a new method, and calculate the absorption probability and cross section for this energy regime, finding again a very good agreement with the exact numerical results. We also determine the high-energy asymptotic value of the total cross section and compare it to the analytic results derived from the application of the geometrical optics limit.
We study the emission of scalars into the bulk from a higher-dimensional rotating black hole. We obtain an analytic solution to the field equation by employing matching techniques on expressions valid in the near-horizon and far-field regimes. Both analytic and numerical results for the absorption probability, in the low-energy and low-angular momentum limit, are derived and found to be in excellent agreement. We also compute the energy emission rate, and show that the brane-to-bulk ratio of the energy emission rates for scalar fields remains always larger than unity in the aforementioned regime.
We consider the evaporation of (4 + n)-dimensional non-rotating black holes into gravitons. We calculate the energy emission rate for gravitons in the bulk obtaining analytical solutions of the master equation satisfied by all three types (S,V,T) of gravitational perturbations. Our results, valid in the low-energy regime, show a vector radiation dominance for every value of n, while the relative magnitude of the energy emission rate of the subdominant scalar and tensor radiation depends on n. The low-energy emission rate in the bulk for gravitons is well below that for a scalar field, due to the absence of the dominant ℓ = 0, 1 modes from the gravitational spectrum. Higher partial waves though may modify this behaviour at higher energies. The calculated low-energy emission rate, for all types of degrees of freedom decreases with n, although the full energy emission rate, integrated over all frequencies, is expected to increase with n, as in the previously studied case of a bulk scalar field.
We look for spherically symmetric star or black hole solutions on a Randall-Sundrum brane from the perspective of the bulk. We take a known bulk solution, and analyse possible braneworld trajectories within it that correspond, from the braneworld point of view, to solutions of the brane Tolman-Oppenheimer-Volkoff equations. Our solutions are therefore embedded consistently into a full bulk solution. We find the full set of static gravitating matter sources on a brane in a range of bulk spacetimes, analyzing which can correspond to physically sensible sources. Finally, we look at time-dependent trajectories in a Schwarzschild-anti de Sitter spacetime as possible descriptions of time-dependent braneworld black holes, highlighting some of the general features one might expect, as well as some of the difficulties involved in getting a full solution to the question.
We study the emission of fermion and gauge boson degrees of freedom on the brane by a rotating higher-dimensional black hole. Using matching techniques, for the near-horizon and far-field regime solutions, we solve analytically the corresponding field equations of motion. From this, we derive analytical results for the absorption probabilities and Hawking radiation emission rates, in the low-energy and low-rotation case, for both species of fields. We produce plots of these, comparing them to existing exact numerical results with very good agreement. We also study the total absorption cross-section and demonstrate that, as in the non-rotating case, it has a different behaviour for fermions and gauge bosons in the low-energy limit, while it follows a universal behaviour -reaching a constant, spin-independent, asymptotic value -in the high-energy regime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.