To determine whether 4 drugs used in the treatment of asthma inhibit the late asthmatic reaction and the associated increase in airway responsiveness induced by toluene diisocyanate (TDI), we studied 24 sensitized subjects divided into 4 groups. Beclomethasone aerosol (1 mg bid), slow-release theophylline (6.5 mg/kg bid), slow-release verapamil (120 mg bid), and cromolyn (20 mg qid via spinhaler), were administered for 7 days, respectively, to 1 of the 4 groups, according to a double-blind, crossover, placebo-controlled study design. When the subjects were treated with placebo, verapamil, or cromolyn, FEV1 markedly decreased and airway responsiveness increased after exposure to TDI. By contrast, beclomethasone prevented the late asthmatic reaction and the associated increase in airway responsiveness to methacholine induced by TDI. Slow-release theophylline partially inhibited both the immediate and the late asthmatic reactions but had no effect on airway hyperresponsiveness to methacholine. These results suggest that only high-dose inhaled steroids can completely block TDI-induced late asthmatic reactions.
We report the case of a 43-yr-old car painter who died within 1 h of exposure to a polyurethane paint in the workplace. A diagnosis of asthma induced by toluene diisocyanate (TDI) had been established 6 yr before, when he underwent inhalation challenges with carbachol and with TDI. The subject had airway hyperresponsiveness to carbachol (PD20FEV1 carbachol = 0.32 mg; normal value greater than 1.0 mg) and developed an early and long-lasting asthmatic reaction after exposure to TDI in the laboratory. Although it was recommended that he change his job or stop using paints containing isocyanates, he continued to work as a car painter, taking antiasthmatic drugs both at work and at home to control asthma symptoms. On Monday, October 6, 1986, at 11:30 A. M., he developed a severe attack of asthma while he was mixing the 2 components of a polyurethane paint. Taken to hospital, he was dead on arrival. Autopsy showed no evidence of cardiac or brain disease; lungs were overinflated, the cut surface showed grey glistening mucous plugs in in the airways. Histologic examination showed denudation of airway epithelium and thickening of the basement membrane with infiltration of the lamina propria by polymorphonuclear leukocytes, mainly eosinophils, and diffuse mucous plugging of bronchioles. Bronchial smooth muscle appeared hyperplastic and disarrayed, and lung parenchyma showed focal areas of alveolar destruction adjacent to areas of perfectly intact alveolar walls.(ABSTRACT TRUNCATED AT 250 WORDS)
To determine whether circulating platelets alter during asthmatic reactions induced by allergens, we studied nine subjects previously shown to develop an early or dual asthmatic reaction after inhalation challenge with extracts of house dust mite or grass pollen. In each subject, FEV1, circulating platelets and leucocytes were measured before, 15, 30 and 60 min, and 2, 4, 6 and 8 hr after inhalation of allergen and diluent control administered in a single-blind, randomized fashion. The same procedure was repeated in six of the nine subjects after bronchoconstriction induced by methacholine. Each subject developed an early asthmatic reaction after allergen inhalation challenge, which was followed by a late asthmatic reaction in six subjects and by an equivocal late asthmatic reaction in two of them (fall in FEV1 of 15 and 17% respectively). Compared with the control day, circulating platelets significantly decreased during the allergen-induced early asthmatic reaction (P less than 0.025, at 30 min). Platelet counts returned to baseline values within 4 hr and remained steady thereafter both in subjects who did and did not develop a late asthmatic reaction. No changes in platelet counts occurred after bronchoconstriction induced by methacholine. Diurnal increase of leucocyte numbers occurred after challenge with both allergen and diluent control. These results suggest that platelets may be involved in the pathogenesis of allergen-induced asthmatic reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.