A growing number of companies have started commercializing low-cost sensors (LCS) that are said to be able to monitor air pollution in outdoor air. The benefit of the use of LCS is the increased spatial coverage when monitoring air quality in cities and remote locations. Today, there are hundreds of LCS commercially available on the market with costs ranging from several hundred to several thousand euro. At the same time, the scientific literature currently reports independent evaluation of the performance of LCS against reference measurements for about 110 LCS. These studies report that LCS are unstable and often affected by atmospheric conditions—cross-sensitivities from interfering compounds that may change LCS performance depending on site location. In this work, quantitative data regarding the performance of LCS against reference measurement are presented. This information was gathered from published reports and relevant testing laboratories. Other information was drawn from peer-reviewed journals that tested different types of LCS in research studies. Relevant metrics about the comparison of LCS systems against reference systems highlighted the most cost-effective LCS that could be used to monitor air quality pollutants with a good level of agreement represented by a coefficient of determination R2 > 0.75 and slope close to 1.0. This review highlights the possibility to have versatile LCS able to operate with multiple pollutants and preferably with transparent LCS data treatment.
Absolute absorption cross sections of the absorption spectrum of the 2nu1 band of the HO2 radical in the near-IR region were measured by continuous wave cavity ring-down spectroscopy (cw-CRDS) coupled to laser photolysis in the wavelength range 6604-6696 cm(-1) with a resolution better than 0.003 cm(-1). Absolute absorption cross sections were obtained by measuring the decay of the HO2 self-reaction, and they are given for the 100 most intense lines. The most important absorption feature in this wavelength range was found at 6638.20 cm(-1), exhibiting an absorption cross section of sigma = 2.72 x 10(-19) cm2 at 50 Torr He. Using this absorption line, we obtain a detection limit for the HO2 radical at 50 Torr of 6.5 x 10(10) cm(-3).
Sol-gel porous materials with tailored or nanostructured cavities have been increasingly used as nanoreactors for the enhancement of reactions between entrapped chemical reactants. The domains of applications issued from these designs and engineering are extremely wide. This tutorial review will focus on one of these domains, in particular on optical chemical sensors, which are the subject of extensive research and development in environment, industry and health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.