The main challenge of a wireless sensor network (WSN) in disaster situations is to discover efficient routing, to improve quality of service (QoS) and to reduce energy consumption. Location awareness of nodes is also useful or even necessary. Without knowing the position of sensor nodes, collected data is insignificant. Ant colony optimization (ACO) is a unique form of optimization method, which is highly suitable for adaptive routing and guaranteed packet delivery. The primary drawbacks of ACO are data flooding, huge overhead of control messages and long convergence time. These drawbacks are overcome by considering location information of sensor nodes. An event-based clustering localized energy efficient ant colony optimization (EBC_LEE-ACO) algorithm is proposed to enhance the performance of WSN. The main focus of the proposed algorithm is to improve QoS and minimize the network energy consumption by cluster formation and selecting the optimal path based on the biological inspired routing-ACO and location information of nodes. In clustering, data is aggregated and sent to the sink (base station) through cluster head (CH) which reduces overheads. EBC_LEE-ACO is a scalable and energy efficient reactive routing algorithm which improves QoS, lifetime and minimizes energy consummation of WSN as compared to other routing algorithms like AODV, ACO, ACO using RSSI. The proposed algorithm reduces energy consumption by approximately 7%, in addition to improvement in throughput, packet delivery ratio and increase in packet drop which has been observed in comparison with other algorithms, i.e. autonomous localization based eligible energetic Path_with_Ant Colony optimization (ALEEP with ACO) of the network. Use of IEEE 802.11 standard in proposed work increased packet drop.
The Internet of Things (IoT) is a dispersed network system that connects the world through the Internet. The architecture of IoT consists of more gateways and resources which cannot be allocated in a manual process. The allocation of resources in IoT is a challenging process due to the higher consumption of energy and high latency rate. To overcome the challenges in existing works, this research introduced an Improved Reptile Search Algorithm (IRSA) to solve the optimization problem which occurs during the time of allocation resources among IoT networks. IRSA employs the methodology of levy flight and cross-over to update the candidate position and enhance the search speed in a single iteration. The proposed method consumes less energy and has low latency during data transmission from User equipment (UE) to the base station.IRSA has been compared with the existing Scalable Resource Allocation Framework (SRAF) and Improved Chaotic Firefly Algorithm (ICFA). The obtained experimental results show that the proposed IRSA attained better performance with an allocation rate of 96.40% which is comparatively higher than SRAF and ICFA with 92.40% and 91.67% respectively.
The ultimate goal of the Super-Resolution (SR) technique is to generate the High-Resolution (HR) image by combining the corresponding images with Low-Resolution (LR), which is utilized for different applications such as surveillance, remote sensing, medical diagnosis, etc. The original HR image may be corrupted due to various causes such as warping, blurring, and noise addition. SR image reconstruction methods are frequently plagued by obtrusive restorative artifacts such as noise, stair casing effect, and blurring. Thus, striking a balance between smoothness and edge retention is never easy. By enhancing the visual information and autonomous machine perception, this work presented research to improve the effectiveness of SR image reconstruction The reference image is obtained from DIV2K and BSD 100 dataset, these reference LR image is converted as composed LR image using the proposed Lucy Richardson and Modified Mean Wiener (LR-MMWF) Filters. The possessed LR image is provided as input for the stage of bicubic interpolation. Afterward, the initial HR image is obtained as output from the interpolation stage which is given as input for the SR model consisting of fidelity term to decrease residual between the projected HR image and detected LR image. At last, a model based on Bilateral Total Variation (BTV) prior is utilized to improve the stability of the HR image by refining the quality of the image. The results obtained from the performance analysis show that the proposed LR-MMW filter attained better PSNR and Structural Similarity (SSIM) than the existing filters. The results obtained from the experiments show that the proposed LR-MMW filter achieved better performance and provides a higher PSNR value of 31.65dB whereas the Filter-Net and 1D,2D CNN filter achieved PSNR values of 28.95dB and 31.63dB respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.