Forward osmosis (FO) and membrane distillation (MD) are two emerging membrane technologies, and both have advantages of low membrane fouling, ability to use for highly saline desalination, and feasibility to integrate with a low-grade heat source like solar collector. Because polyethylene glycol (PEG) is a flexible, water-soluble polymer, it is an essential material used for membrane fabrication and enhancement of membrane properties. Low-molecular-weight PEG sometimes is used as pore constrictor and pore former for developing MD membranes and support layer of FO membranes. Due to the affinity of PEG chains to water molecules, PEG, its derivatives, and copolymers have been widely used in the fabrication/ modification of FO and MD membranes, which are currently applied to bioseparation, wastewater treatment, and desalination in academia and industry at the pilot scale. This chapter covers direct PEG and its membrane separation applications in wastewater treatment and desalination. The advancement of PEG in membrane science and engineering is reviewed and discussed comprehensively. We focus on the effectiveness of PEG on membrane antifouling and the stability of PEG-modified membranes when applied to wastewater treatment and desalination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.