Self-assembled indium linear chains on the Si(111) surface are found to exhibit instability of the metallic phase and 1D charge density wave (CDW). The room-temperature metallic phase of these chains undergoes a temperature-induced, reversible transition into a semiconducting phase. The 1D CDW along the chains is observed directly in real space by scanning tunneling microscopy at low temperature. The Fermi contours of the metallic phase measured by angle-resolved photoemission exhibit a perfect nesting predicting precisely the CDW periodicity. [S0031-9007(99)09330-8]
Here we show, with simultaneous transport and photoemission measurements, that the graphene-terminated SiC(0001) surface undergoes a metal-insulator transition upon dosing with small amounts of atomic hydrogen. We find the room temperature resistance increases by about 4 orders of magnitude, a transition accompanied by anomalies in the momentum-resolved spectral function including a non-Fermi-liquid behavior and a breakdown of the quasiparticle picture. These effects are discussed in terms of a possible transition to a strongly (Anderson) localized ground state.
The interesting physics and potential memory technologies resulting from topologically protected spin textures such as skyrmions, has prompted efforts to discover new material systems that can host these kind of magnetic structures. Here we use the highly tunable magnetic properties of amorphous Fe/Gd multilayer films to explore the magnetic properties that lead to dipole-stabilized skyrmions and skyrmion lattices that form from the competition of dipolar field and exchange energy. Using both real space imaging and reciprocal space scattering techniques we determined the range of material properties and magnetic fields where skyrmions form.Micromagnetic modeling closely matches our observation of small skyrmion features (~50 to 70nm) and suggests these class of skyrmions have a rich domain structure that is Bloch like in the center of the film and more Néel like towards each surface. Our results provide a pathway to engineer the formation and controllability of dipole skyrmion phases in a thin film geometry at different temperatures and magnetic fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.